• 제목/요약/키워드: Hybrid Classifier

검색결과 81건 처리시간 0.025초

자동 감성 인식을 위한 비교사-교사 분류기의 복합 설계 (Design of Hybrid Unsupervised-Supervised Classifier for Automatic Emotion Recognition)

  • 이지은;유선국
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1294-1299
    • /
    • 2014
  • The emotion is deeply affected by human behavior and cognitive process, so it is important to do research about the emotion. However, the emotion is ambiguous to clarify because of different ways of life pattern depending on each individual characteristics. To solve this problem, we use not only physiological signal for objective analysis but also hybrid unsupervised-supervised learning classifier for automatic emotion detection. The hybrid emotion classifier is composed of K-means, genetic algorithm and support vector machine. We acquire four different kinds of physiological signal including electroencephalography(EEG), electrocardiography(ECG), galvanic skin response(GSR) and skin temperature(SKT) as well as we use 15 features extracted to be used for hybrid emotion classifier. As a result, hybrid emotion classifier(80.6%) shows better performance than SVM(31.3%).

분류기 앙상블 선택을 위한 혼합 유전 알고리즘 (Hybrid Genetic Algorithm for Classifier Ensemble Selection)

  • 김영원;오일석
    • 정보처리학회논문지B
    • /
    • 제14B권5호
    • /
    • pp.369-376
    • /
    • 2007
  • 이 논문은 최적의 분류기 앙상블 선택을 위한 혼합 유전 알고리즘을 제안한다. 혼합 유전 알고리즘은 단순 유전알고리즘의 미세 조정력을 보완하기 위해 지역 탐색 연산을 추가한 것이다. 혼합 유전 알고리즘의 우수성을 입증하기 위해 단순 유전 알고리즘과 혼합 유전 알고리즘 각각을 비교 실험하였다. 또한 혼합 유전 알고리즘의 지역 탐색 연산으로 두 가지 방법(SSO: 순차 탐색 연산, CSO: 조합 탐색 연산)을 제안한다. 비교 실험 결과는 혼합 유전 알고리즘이 단순 유전 알고리즘에 비해 해를 탐색하는 능력이 우수하였다. 또한 분류기들의 상관관계를 고려한 CSO 방법이 SSO 방법보다 더 우수하였다.

RBF와 LVQ 인공신경망을 이용한 요(尿) 딥스틱 선별검사에서의 요로감염 분류 (Classification of UTI Using RBF and LVQ Artificial Neural Network in Urine Dipstick Screening Test)

  • 민경기;강명서;신기영;이상식;문정환
    • Journal of Biosystems Engineering
    • /
    • 제33권5호
    • /
    • pp.340-347
    • /
    • 2008
  • Dipstick urinalysis is used as a routine test for a screening test of UTI (urinary tract infection) in primary practice because urine dipstick test is simple. The result of dipstick urinalysis brings medical professionals to make a microscopic examination and urine culture for exact UTI diagnosis, therefore it is emphasized on a role of screening test. The objective of this study was to the classification between UTI patients and normal subjects using hybrid neural network classifier with enhanced clustering performance in urine dipstick screening test. In order to propose a classifier, we made a hybrid neural network which combines with RBF layer, summation & normalization layer and L VQ artificial neural network layer. For the demonstration of proposed hybrid neural network, we compared proposed classifier with various artificial neural networks such as back-propagation, RBFNN and PNN method. As a result, classification performance of proposed classifier was able to classify 95.81% of the normal subjects and 83.87% of the UTI patients, total average 90.72% according to validation dataset. The proposed classifier confirms better performance than other classifiers. Therefore the application of such a proposed classifier expect to utilize telemedicine to classify between UTI patients and normal subjects in the future.

A Hybrid SVM-HMM Method for Handwritten Numeral Recognition

  • Kim, Eui-Chan;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1032-1035
    • /
    • 2003
  • The field of handwriting recognition has been researched for many years. A hybrid classifier has been proven to be able to increase the recognition rate compared with a single classifier. In this paper, we combine support vector machine (SVM) and hidden Markov model (HMM) for offline handwritten numeral recognition. To improve the performance, we extract features adapted for each classifier and propose the modified SVM decision structure. The experimental results show that the proposed method can achieve improved recognition rate for handwritten numeral recognition.

  • PDF

하이브리드 방법의 사용자 질의 의도 분류 (A Hybrid Method for classifying User's Asking Points)

  • Harksoo Kim;An, Young Hun;Jungyun Seo
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권1_2호
    • /
    • pp.51-57
    • /
    • 2003
  • 질의응답 시스템이 올바른 답변을 제시하기 위해서는 사용자의 의도를 정확하고 강건하게 파악하는 것이 매우 중요하다. 이러한 요구 사항을 만족시키기 위해서 본 논문에서는 실용적 실의응답 시스템을 위한 질의 유형 분류기를 제안한다 제안된 실의 유형 분류기는 규칙 기반의 방법과 통계 기반의 방법을 접목시킨 하이브리드 방법을 사용한다. 제안된 방법을 사용함으로써 수동으로 규칙을 작성하는 시간을 줄일 수 있었고 정확률을 향상시킬 수 있었으며 안정성을 보장받을 수 있었다 제안된 방법에 대한 실험에서 질의 유형을 분류하는데 80%의 정확률을 얻었다.

다층신경망에서 하이브리드 학습 규칙의 구현에 관한 연구 (A Study on the Implementation of Hybrid Learning Rule for Neural Network)

  • 송도선;김석동;이행세
    • 한국음향학회지
    • /
    • 제13권4호
    • /
    • pp.60-68
    • /
    • 1994
  • 본 논문에서는 다층구조 순방향 신경회로망에 적용될 수 있는 것으로 입력의 특징 추출기능(Feature Extractor)이 우수한 Hebb 학습 규칙과 패턴 분류 기능(Classifier)이 우수한 BP 알고리듬을 결합한 Hybrid학습 규칙을 제안하고자 한다. 오차역전파 학습법칙을 적용한 다층구조퍼셉트론(MLP)과는 달리, 다층구조에 오차역전파 학습법칙과 Hebb학습법칙이 동시에 적용될 수 있는 Hybrid(Hebbian+BP)학습법칙은 학습시에 출력층의 연결강도를 제외한 모든 연결강도 계산에 적용되며 출력층에는 기존의 오차역전파법칙만이 적용된다. 출력층에 Hebb 학습법칙을 제외시킨것은 다층구조학습시에 학습의 수렴성에 대한 보장이 주어져 있지 않기 때문이다. 제안된 Hybrid 학습법칙의 성능평가를 위해 몇가지의 영역구분 문제에 적용한 결과 제안된 학습법이 기존의 BP보다 우수함을 보였다. 학습속도면에서는 기존의 BP법칙에 비해 훨씬 빠른 수렴속도를 보여 주었는데, 그중 한가지 예를 보면 제안된 Hybrid법칙에 의한 학습은 기존의 BP의 학습회수의 2/10만으로도 가능함을 보여주었다. 인식률에서도 제안된 법칙에 의한 결과가 BP에 의한 결과보다 최고 약 $0.77\%$ 우수하다.

  • PDF

GA기반 TSK 퍼지 분류기의 설계 및 응용 (The Design of GA-based TSK Fuzzy Classifier and Its application)

  • 곽근창;김승석;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

복합 특징과 결합 인식기에 의한 필기체 숫자인식 (Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier)

  • 박중조;송영기;김경민
    • 한국정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.14-22
    • /
    • 2001
  • 필기체 숫자는 개인에 따라 필체가 매우 다양하므로 단일 특징과 단일 분류기를 사용하여 오프라인 필기체 숫자인식을 수행할 경우 높은 인식률을 얻기가 어렵다. 이에 본 논문에서는 복합 특징과 결합 인식기를 사용하여 필기체 숫자 인식의 인식률을 향상시키는 방안을 제시한다. 인식률의 향상을 위해, 먼저 상호 보완적인 특징들-방향특징, 교차점특징, 망특징-을 선정하고 이를 사용하여 숫자영상의 전역적 및 국부적 특징을 갖는 세 종류의 새로운 복합 특징을 구성한다. 그리고 패턴 인식기로는 세 개의 신경회로망 분류기를 퍼지 적분으로 결합한 결합 인식기를 사용한다. 본 인식기의 성능 평가를 위해 Concordia 대차의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 97.85%의 인식률을 달성하였다.

  • PDF

하이브리드 다중 분류기시스템 (Hybrid Multiple Classifier Systems)

  • 김인철
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.133-145
    • /
    • 2004
  • 단일 분류기보다 우수한 성능을 얻기 위해 다수의 분류기들을 결합하는 방법은 폭 넓게 이용되어 오고 있는 기술이다. 하나의 다중 분류기 시스템(MCS)를 구축하는 일은 두 가지 해결해야 할 문제들을 가지고 있다. 하나는 다양한 기반-레벨의 분류기들을 어떤 방법으로 생성하느냐 하는 것이고, 다른 하나는 이들의 예측을 어떤 방법으로 결합하느냐 하는 것이다. 본 논문에서는 기존의 다중 분류기 시스템들인 bagging, boosting, 그리고 staking의 특징들을 살펴본 다음, 새로운 다중 분류기 시스템들인 stacked boosting, boosting, bagged stacking, 그리고 boosted stacking들을 제안한다. 이들은 기존의 다중 분류기 시스템들의 장점들을 결합한 일종의 하이브리드 다중 분류기 시스템들이다. 새로 제안한 다중 분류기 시스템들의 성능을 평가하기 위해, 본 논문에서는 UCI KDD 데이터 아카이브에서 제공되는 서로 다른 9가지의 실세계 데이터 집합들을 이용하여 실험들을 전개하였다. 실험 결과, 본 논문에서 제안한 하이브리드 다중 분류기 시스템들, 특히 bagged stacking과 boosted stacking이 기존의 다중 분류기 시스템들에 비해 우수한 성능을 보여 주었다.

  • PDF

의수 제어를 위한 HMM-MLP 근전도 신호 인식 기법 (An EMG Signals Discrimination Using Hybrid HMM and MLP Classifier for Prosthetic Arm Control Purpose)

  • 권장우;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권3호
    • /
    • pp.379-386
    • /
    • 1996
  • This paper describes an approach for classifying myoelectric patterns using a multilayer perceptrons (MLP's) and hidden Markov models (HMM's) hybrid classifier. The dynamic aspects of EMG are important for tasks such as continuous prosthetic control or vari- ous time length EMG signal recognition, which have not been successfully mastered by the most neural approaches. It is known that the hidden Markov model (HMM) is suitable for modeling temporal patterns. In contrasts the multilayer feedforward networks are suitable for static patterns. Ank a lot of investigators have shown that the HMM's to be an excellent tool for handling the dynamical problems. Considering these facts, we suggest the combination of MLP and HMM algorithms that might lead to further improved EMG recognition systems.

  • PDF