• 제목/요약/키워드: Hwangto-concrete

검색결과 10건 처리시간 0.021초

황토 콘크리트의 배합조건에 따른 강도성상 및 내구성 (Characteristics of Strength and Durability of Hwangto-Concrete according to its Mixing Condition)

  • 황혜주;노태학;김진일
    • KIEAE Journal
    • /
    • 제8권5호
    • /
    • pp.55-60
    • /
    • 2008
  • The purpose of this study is to increase the use of Hwangto and examine the strength according to what it is compounded with. Hwangto-concrete containing Hwanto without cement nor organic chemical products were compared to the traditional cement concrete through some durability experiments. We expect to gain more knowledge on the potentials of Hwangto-concrete as an architectural source. 1) As Hwangto binder amount rises, the value of slump increases too. The reason is that the increase of the quantity of cement causes the increase of the amount of material and the decrease of the amount of aggregate. 2) When the mixed component into Hwangto-concrete remains at 2%, the compress strength is generally dispersed high along the per unit fission, in case the amount of which is at $400(g/m^3)$. The highest compress strength is 39MPa. It means that it can be applied to common structures and we need to conduct a basic property test to ensure the strength and fluidness. 3) Hwangto-concrete is expected to be highly used in the ocean structure and chemical industry because it has better resistance to sulfuric acid and to hydrochloric acid than the cement-concrete has. The result of this study is as follows. It is expected that Hwangto-concrete will be widely applied and further research on its durability and tests for its basic substantial characteristics based on future component added to it.

황토콘크리트의 현장적용에 따른 시공 및 품질 특성에 관한 연구 (A Study on Construction and Quality in accordance with the Field Application of Hwangto Concrete)

  • 황혜주;문제춘;강남이
    • KIEAE Journal
    • /
    • 제9권1호
    • /
    • pp.91-97
    • /
    • 2009
  • In this thesis presents the application to the field of Hwangto-used concrete highlighted as an eco-friendly material and performs an experiment in the aspect of construction and quality on the construction for all parts of buildings, rather than for some parts of buildings as shown from existing application and got the conclusion as followings. 1) It was turned out that Hwangto concrete showed lower hydrated heat and arid contraction comparing to those of cement concrete. And this phenomenon is judged to appear high when applied to mass building and huge span structures. 2) The construction of Hwangto concrete is judged to be possible in applying to constructions since the mechanical construction seems to be possible by using pump car and ready-mixed concrete which are used at the practical sites at the moment. 3) The pockmarks appearing on the exposure surface were about 2% of total area. This has great cohesion by Hwangto concrete but is judged that it will be improved through enough vibration stamping. Through the experiments of quality and construction of Hwangto concrete as environment-friendly construction materials, it is possible to judge modernized application of Hwangto concrete. It is in need of more studies about economical efficiency, structural stability, design application, etc. afterwards.

비소성 황토 치환 콘크리트의 수화열 발현 특성 고찰 (A Study on The Hydration Heat Characteristics of non-fired Hwangto Substituted Concrete)

  • 박민한;서동균;이예찬;김규용;남정수;이태규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.34-35
    • /
    • 2021
  • In this study, we compared and analyzed hydration heat of the Concrete(NC) and non-fired Hwangto Concrete(HT). The Concrete(NC) was based on the mix that showed 30, 45 MPa on compressive strength on 28th and Only cement was used to make it. and We substituted 30% of weight of unit cement to non-fired Hwangto to create non-fired Hwangto Concrete(HT).

  • PDF

비소성 황토의 치환율에 따른 구조용 콘크리트의 초음파 속도 분석 (Analysis of Non-Sintered Hwangto Replacement Rate in Structural Concrete on Ultrasonic Pulse Velocity)

  • 김원창;최희용;최형길;남정수;이태규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.45-46
    • /
    • 2022
  • In this study, ultrasonic pulse velocity is compared on non-sintered hwangto concrete(NHTC) and normal concrete(NC) at ages. Strength of specimens set up 30MPa. Cement is replaced with 15 and 30% non-sintered hwangto. UPV is tested at 1, 3, 7, 28, 56, 91 days. As a result, UPV increases as the age and strength increase, but decreases as the non-sintered hwangto replacement increases. Although ultrasonic pulse velocity of NHTC was 72% lower than NC, after that, difference tends to decrease

  • PDF

비소성 황토를 치환한 고강도 콘크리트의 고온 역학적 특성 평가를 위한 초음파 속도 분석 (Ultrasonic pulse velocity analysis for high- temperature mechanical properties of high strength concrete replacing non-sintered hwangto )

  • 김태형;김원창;이태규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.273-274
    • /
    • 2023
  • In this study, ultrasonic pulse velocity was analyzed to evaluate the high-temperature mechanical properties of concrete mixed with non-sintered hwangto. The W/B of the specimens was set at 0.41, the percentage of non-sintered hwangto admixture was set at two levels of 15,30%. The target temperature of the specimen is set to 6 levels of 20, 100, 200, 300, 500, 700 ℃, and the heating rate is set to 1℃/min. The result showed that the amount of non-sintered hwangto incorporated into the concrete tends to results in lower compressive strength. Ultrasonic pulse velocity showed similar trends, but differed in some areas.

  • PDF

초기 재령에서 비소성 황토 혼입율에 따른 콘크리트의 강도 발현 분석 (Analyzing the Strength Development of Concrete with Function of Non-Sintered Hwangto Admixture Ratio at Early Ages )

  • 김태형;김원창;최형길;최희용;이태규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.39-40
    • /
    • 2023
  • In this study, the compressive strength development was analyzed at early ages of concrete specimens admixed with non-sintered hwangto to reduce the CO2 emissions generated during cement production. The W/B of the specimens was set at 0.41, the percentage of non-sintered hwangto admixture was set at three levels of 15, 30, and 45%, and the compressive strength were measured at 1, 3, 7, and 28 days. The results showed that the compressive strength decreases as the percentage of non-sintered hwangto increases, but the strength development rate increases, and the NHTC41-15 test specimen developed a compressive strength close to NC41 at 28 days.

  • PDF

초기 재령에서 비소성 황토 혼입 고강도 콘크리트의 압축강도 발현 예측을 위한 초음파 속도법 검토 (UPV Prediction Method on Compressive Strength of High Strength Concrete Mixed with Non-Sintered Hwangto at Early Age )

  • 남영진;김원창;최형길;김규용;이태규
    • 한국건설순환자원학회논문집
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 2023
  • 본 연구에서는 초기 재령에서 NSH(Non-sintered Hwangto) 치환율에 따른 고강도 콘크리트의 역학적 특성을 평가하였다. NSH의 치환율은 15 % 및 30 %로 설정했다. 평가 항목은 압축강도와 UPV(Ultrasonic pulse velocity)로 설정하였으며, 최종적으로 UPV분석을 통해 압축강도 예측 방정식을 제안하였다. 압축강도와 UPV에서는 NSH 치환율이 증가할수록 낮은 강도 및 UPV를 보였다. 또한 압축강도와 UPV의 상관관계 분석 결과, 상관계수(R2)는 NC33(Normal concrete)은 0.99, NSHC(Non-sintered Hwangto Concrete)33-15는 0.97, 그리고 NSHC33-30은 0.94로 높은 상관관계를 나타냈다.

비소성 황토 결합재를 혼합한 콘크리트의 강도 발현 평가를 위한 초음파 속도법의 검토 (A Study on Evaluating the Compressive Strength Development of Concrete Mixed with Non-sintered Hwangto Admixture by an Ultrasonic Method)

  • 김정욱;김원창;김규용;이태규
    • 한국건축시공학회지
    • /
    • 제23권1호
    • /
    • pp.35-43
    • /
    • 2023
  • 본 연구에서는 시멘트 대체 재료로서 비소성 황토(NHT)를 혼합한 콘크리트의 역학적 특성을 평가하였으며, 초음파 속도 분석을 통한 콘크리트의 강도 예측식을 제안하였다. 혼합된 NHT의 시멘트 치환율을 0, 15 및 30%로 설정하였으며, 시멘트 및 NHT의 분체량에 대한 영향을 평가하기 위해 목표 강도를 30 및 45MPa로 설정하였다. 평가한 항목은 압축 강도, 초음파 속도 및 탄성계수로 설정하였으며, 재령 1, 3, 7 및 28일마다 설정한 항목을 측정하였다. 실험 결과, NHT 치환율이 증가함에 따라 역학적 특성은 감소하는 경향을 보였으며. 또한, 압축 강도와 초음파 속도의 상관관계 분석 결과 상관계수(R2)는 NHT를 혼합한 콘크리트의 경우 약 0.95로 높은 관계성을 보였다.

비소성 황토 콘크리트의 거푸집 탈형 시점 검토를 위한 초음파속도와 강도의 상관관계 회귀 분석 (Regression analysis of the correlation between ultrasonic pulse velocity and strength to examine the demoulding time of non-sintered hwangto concrete)

  • 남영진;김원창;류정림;최희용;최형길;이태규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.159-160
    • /
    • 2023
  • Recently, interest in reducing cement has been growing. Hwangto, an eco-friendly material, has advantages such as air purification effect and humidity control, but when used, accidents such as form collapse may occur due to low strength and reduced durability. In order to quantitatively evaluate the timing of mold demolding, we would like to evaluate the timing of mold demolding through correlation with compressive strength using ultrasonic pulse velocity. As a result, the time at which 5 MPa is developed is after 20 hours for the test specimen of W/B 41 , in the case of W/B 33, NC33 and HTC33-15 were equally expressed at 12 hours, and HTC33-30 was expressed at 16 hours.

  • PDF

Mechanical Properties of Hwangtoh-Based Alkali-Activated Concrete

  • Yang, Keun-Hyeok;Hwang, Hey-Zoo;Lee, Seol
    • Architectural research
    • /
    • 제11권1호
    • /
    • pp.25-33
    • /
    • 2009
  • This study presents the testing of 15 hwangtoh-based cementless concrete mixes to explore the significance and limitations of the development of eco-friendly concrete without carbon dioxide emissions while maintaining various beneficial effects. Hwangtoh, which is a kind of kaolin, was incorporated with inorganic materials, such as calcium hydroxide, to produce a cement-less binder. The main variables investigated were the water-to-binder ratio and fine aggregate-to-total aggregate ratio to ascertain the reliable mixing design of hwangtoh-based cementless concrete. The variation of slump with elapsed time was recorded in fresh concrete specimens. Mechanical properties of hardened concrete were also measured: including compressive strength gain, splitting tensile strength, moduli of rupture and elasticity, stress-strain relationship, and bond resistance. In addition, mechanical properties of hwangtoh-based cement-less concrete were compared with those of ordinary portland cement (OPC) concrete and predictions obtained from the design equations specified in ACI 318-05 and CEB-FIP for OPC concrete, wherever possible. Test results show that the mechanical properties of hwangtoh-based concrete were significantly influenced by the water-to-binder ratio and to less extend by fine aggregate-to-total aggregate ratio. The moduli of rupture and elasticity of hwangtoh-based concrete were generally lower than those of OPC concrete. In addition, the stress-strain and bond stress-slip relationships measured from hwangtoh-based concrete showed little agreement with the design model specified in CEB-FIP. However, the measured moduli of rupture and elasticity, and bond strength were higher than those given in ACI 318-05 and CEB-FIP. Overall, the test results suggest that the hwangtoh-based concrete shows highly effective performance and great potential as an environmental-friendly building material.