• Title/Summary/Keyword: Humidity effectiveness

Search Result 93, Processing Time 0.027 seconds

Performance Analysis of a Wet Air-Cycle Refrigeration System (습공기사이클 냉동시스템의 성능해석)

  • Won, Sung Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.504-511
    • /
    • 2014
  • The objective of this study is to theoretically analyze the performance of an open wet air-cycle refrigeration system, which nowadays is increasingly generating environmental concern. The temperature and relative humidity of the outside air are selected as the most important parameters. As the temperature and relative humidity of the outside air increase, the pressure ratio of the ACM compressor is determined to be nearly constant, the air temperature at the exit of the system increases, and the amount of condensed water, the cooling capacity, the COP, and the total entropy production rate increase overall. The effects of the effectiveness of the heat exchanger and the efficiency of the turbine on the performance are greater than that of the efficiency of the ACM compressor. Also, the performance of the wet air-cycle refrigeration system with two heat exchangers is enhanced, with a high COP and low total entropy production rate, compared to the system with a single heat exchanger.

A study of Agricultural fatigue shoes - A comparative study of heat load by shoe type - (농작업화에 관한 연구 - 신발종류에 따른 열적 부담 비교연구 -)

  • 이경숙;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.7 no.2
    • /
    • pp.99-108
    • /
    • 1996
  • This study has intended to suggest fundamental data to develope and choose appropriate shoes for upland farming in order to prevent health deterioration of women workers and improve work effectiveness and reduce fatigue by wearing appropriate shoes. During 1995. 4. 28 - 5. 10, Fifty women workers in hot pepper farming were observed and major shoe types, which were rubber shoes, walking shoes, slippers, and rubber boots, were selected for the study. During 1995. 10. 9 - 31, two subjects were tested by wearing those shoes in the laboratory where the temperature was 24$\pm$1$^{\circ}C$ and relative humidity 50$\pm$5%RH. And the temperature & humidity on sole and in the shoes, the rectal temperature, skin temperature, blood pressure, pulse, lactate concentration of blood, Flickers' value and subjective sensation were measured. The results were as follows : 1. 84% of women workers mentioned that they need shoes improvement and the order of most frequent shoe types to be worn was rubber shoes, walking shoes, slippers, rubber boots. 2. The rate of women who were unsatisfied with shoes for upland farming is 38 percentages. The reason of unsatisfaction was that feet were in a sweat and alien substances were let into shoes. 3. The temperature & humidity on sole were the lowest in rubber boots during experiment(p<0.01). 4. The relative humidity in the shoes was the highest in rubber boots by 90% and the lowest in walking shoes by 72% during rest And the humidity in slippers and walking shoes were significantly low in experiment(p<0.001). 5. Rubber boots showed the highest rise in rectal temperature by 0.2$^{\circ}C$ showing increase of core temperature (p<0.05). 6. The mean skin temperature during experiment was highest in rubber boots by 33.8$^{\circ}C$(p<0.001).

  • PDF

Development of a Simple Analytical Model for Desiccant Wheels-II. Effectiveness Correlations (로터리 제습기의 단순 해석 모델 개발-II. 유용도 상관식)

  • Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • An effectiveness model has been developed from the approximate analytical solution of a rotary desiccant wheel. The resulting equations clearly show that the maximum air temperature and humidity differences are two independent driving forces commonly acting in the heat and mass transfer processes. Comparison with the numerical model from the preceeding study revealed that the effectiveness model could make realistic predictions roughly with 10% uncertainty. The model may be useful for the rough design and analysis of desiccant evaporative cooling systems.

Assessment of microclimate conditions under artificial shades in a ginseng field

  • Lee, Kyu Jong;Lee, Byun-Woo;Kang, Je Yong;Lee, Dong Yun;Jang, Soo Won;Kim, Kwang Soo
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.90-96
    • /
    • 2016
  • Background: Knowledge on microclimate conditions under artificial shades in a ginseng field would facilitate climate-aware management of ginseng production. Methods: Weather data were measured under the shade and outside the shade at two fields located in Gochang-gun and Jeongeup-si, Korea, in 2011 and 2012 seasons to assess temperature and humidity conditions under the shade. An empirical approach was developed and validated for the estimation of leaf wetness duration (LWD) using weather measurements outside the shade as inputs to the model. Results: Air temperature and relative humidity were similar between under the shade and outside the shade. For example, temperature conditions favorable for ginseng growth, e.g., between $8^{\circ}C$ and $27^{\circ}C$, occurred slightly less frequently in hours during night times under the shade (91%) than outside (92%). Humidity conditions favorable for development of a foliar disease, e.g., relative humidity > 70%, occurred slightly more frequently under the shade (84%) than outside (82%). Effectiveness of correction schemes to an empirical LWD model differed by rainfall conditions for the estimation of LWD under the shade using weather measurements outside the shade as inputs to the model. During dew eligible days, a correction scheme to an empirical LWD model was slightly effective (10%) in reducing estimation errors under the shade. However, another correction approach during rainfall eligible days reduced errors of LWD estimation by 17%. Conclusion: Weather measurements outside the shade and LWD estimates derived from these measurements would be useful as inputs for decision support systems to predict ginseng growth and disease development.

Relationship between the Cathodic Protection of Pipe Buried in Soil and Environmental Factors (토양 매설 배관의 음극방식과 환경인자 간의 상관관계)

  • Choi, S.H.;Won, S.Y.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.372-380
    • /
    • 2022
  • The external corrosion control of buried pipes can be achieved by a combination of coatings and cathodic protection to maximize effectiveness. One of the factors affecting cathodic protection is the environmental soil conditions. Because soil is a kind of electrolyte, the environmental conditions of soil may be changed by the atmospheric environment. Therefore, in this study, changes in environmental soil factors by atmospheric environmental factors were monitored. In cathodic protection, on-potential and off-potential were measured from December 2021 to July 2022. The effects of external environmental factors and soil environmental factors on cathodic protection were analyzed. Changes in outdoor temperature affected soil temperature, and soil conductivity had a proportional relationship with soil humidity, but outdoor humidity and precipitation did not significantly affect humidity and conductivity of the soil. In contrast, in cathodic protection, the on-potential was affected by temperature, humidity, the conductivity of the soil, and the anode used, but the off-potential was little affected by these factors.

Spatial Interpolation of Meteorologic Variables in Vietnam using the Kriging Method

  • Nguyen, Xuan Thanh;Nguyen, Ba Tung;Do, Khac Phong;Bui, Quang Hung;Nguyen, Thi Nhat Thanh;Vuong, Van Quynh;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.134-147
    • /
    • 2015
  • This paper presents the applications of Kriging spatial interpolation methods for meteorologic variables, including temperature and relative humidity, in regions of Vietnam. Three types of interpolation methods are used, which are as follows: Ordinary Kriging, Universal Kriging, and Universal Kriging plus Digital Elevation model correction. The input meteorologic data was collected from 98 ground weather stations throughout Vietnam and the outputs were interpolated temperature and relative humidity gridded fields, along with their error maps. The experimental results showed that Universal Kriging plus the digital elevation model correction method outperformed the two other methods when applied to temperature. The interpolation effectiveness of Ordinary Kriging and Universal Kriging were almost the same when applied to both temperature and relative humidity.

Adaptive Fuzzy Output Feedback Control based on Observer for Nonlinear Heating, Ventilating and Air Conditioning System

  • Baek, Jae-Ho;Hwang, Eun-Ju;Kim, Eun-Tai;Park, Mi-gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.76-82
    • /
    • 2009
  • A Heating, Ventilating and Air Conditioning (HVAC) system is a nonlinear multi-input multi-output (MIMO) system. This system is very difficult to control the temperature and the humidity ratio of a thermal space because of complex nonlinear characteristics. This paper proposes an adaptive fuzzy output feedback control based on observer for the nonlinear HVAC system. The nonlinear HVAC system is linearized through dynamic extension. State observers are designed for estimating state variables of the HVAC system. Fuzzy systems are employed to approximate uncertain nonlinear functions of the HVAC system with unavailable state variables. The obtained controller compares with an adaptive feedback controller. Simulation is given to demonstrate the effectiveness of our proposed adaptive fuzzy method.

A study on the manufacture of humidity sensors using layered silicate nanocomposite materials (층상 실리케이트계 나노복합 소재 적용 습도센서 제조에 관한 연구)

  • Park, Byoung-Ki
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, evaluated the properties of layered silicate-based nanocomposite sensitive film. For the fabrication of nanocomposite materials, we selected organically modified layered silicate materials, specifically Cloisite® and Bentone®, which were treated with quaternary ammonium salts. The impedance of the humidity sensors containing organically modified montmorillonite/hectorite clay decreased with increasing relative humidity(RH%). In the case of the Cloisite® humidity sensor exhibited slightly better impedance linearity and hysteresis compared to the Bentone® 38 humidity sensor. Additionally the impedance of the sensor with Bentone® 38 addition was the lowest when compared to the Cloisite®-modified sensor. Comparing the Cloisite®-modified sensors individually, we observed different moisture absorption characteristics based on the hydrophilic properties of the organic-treated materials. The response speed of Cloisite® 93A tended to be slower due to differences in moisture evaporation rates influenced by the hydrophilic organic components. Based on these results, moisture barriers utilizing organically modified layered silicate materials may exhibit slightly lower moisture absorption properties compared to conventional polymer-based moisture barriers. However, their excellent stability, simple processing, and cost-effectiveness make them suitable for humidity sensor applications.

Development of a General Analytical Model for Desiccant Wheels (로터리 제습기의 일반 해석 모델)

  • Kim, Dong-Seon;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.109-118
    • /
    • 2013
  • The absence of a simple and general analytical model has been a problem in the design and analysis of desiccant-assisted air-conditioning systems. In this study, such an analytical model has been developed based on the approximate integral solution of the coupled transient ordinary differential equations for the heat and mass transfer processes in a desiccant wheel. It turned out that the initial conditions should be determined by the solution of four linear algebraic equations including the heat and mass transfer equations for the air flow as well as the energy and mass conservation equations for the desiccant bed. It is also shown that time-averaged exit air temperature and humidity relations could be given in terms of the heat and mass transfer effectiveness.

A Study on the Factors Affecting the Performance of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능에 영향을 미치는 인자에 관한 연구)

  • Chung Min-Ho;Yoo Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.956-964
    • /
    • 2005
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery The purpose of this research is to find the factors affecting the performance of paper heat exchanger for exhaust heat recovery, which can be applied directly to the conventional ventilation unit, air-purifier, and air-conditioning system. In this study, thermal performance and pressure loss of the paper heat exchanger are measured and compared at various operating conditions. The effectiveness of sensible, latent and total heat at the face velocity of 0.75 m/s are $77\%,\;47\%\;and\;57\%$ in the cooling condition and $77\%,\;59\%,\;and\;\%$ in the heating condition, respectively. The effectiveness for sensible heat is only affected by velocity. On the other hand, the effectiveness for latent heat is affected. by temperature and relative humidity.