• Title/Summary/Keyword: Human-Centric Lighting

Search Result 6, Processing Time 0.03 seconds

Indoor Surveillance Camera based Human Centric Lighting Control for Smart Building Lighting Management

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Lee, Min Woo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • The human centric lighting (HCL) control is a major focus point of the smart lighting system design to provide energy efficient and people mood rhythmic motivation lighting in smart buildings. This paper proposes the HCL control using indoor surveillance camera to improve the human motivation and well-beings in the indoor environments like residential and industrial buildings. In this proposed approach, the indoor surveillance camera video streams are used to predict the day lights and occupancy, occupancy specific emotional features predictions using the advanced computer vision techniques, and this human centric features are transmitted to the smart building light management system. The smart building light management system connected with internet of things (IoT) featured lighting devices and controls the light illumination of the objective human specific lighting devices. The proposed concept experimental model implemented using RGB LED lighting devices connected with IoT features open-source controller in the network along with networked video surveillance solution. The experiment results are verified with custom made automatic lighting control demon application integrated with OpenCV framework based computer vision methods to predict the human centric features and based on the estimated features the lighting illumination level and colors are controlled automatically. The experiment results received from the demon system are analyzed and used for the real-time development of a lighting system control strategy.

A Study on Implementation of Human Centric Lighting Using Sunrise and Sunset Data (일출일몰 데이터를 이용한 인간 중심 조명 구현에 관한 연구)

  • Doowon Jang;Chunghyeok Kim;Gyuwon Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.486-493
    • /
    • 2024
  • Lighting has been used for a long time as a medium to convey brightness from darkness, and through incandescent lamps and fluorescent lamps, LED light sources have now become the standard in the lighting industry. Recently, the lighting equipment industry has been undergoing rapid digital transformation, starting with smart lighting, and is evolving into smart lighting customized for individuals and spaces through the development of IoT technology, cloud-based services, and data analysis. However, the blue light emitted from digital devices (computers, smartphones, tablets, etc.) or LED lights stimulates the melanopsin in the optic ganglion cells in the retina of the eye, which in turn stimulates the secretion of melatonin through the pineal gland, which regulates the secretion of melatonin. This can reduce sleep quality or disrupt biological rhythms. This interaction between blue light and melatonin has such a significant impact on human sleep patterns and overall health that it is essential to reduce exposure to blue light, especially in the evening. Human-centered lighting refers to lighting that takes into account the effects of light on the physical and mental areas, such as human activity and awakening, improvement of sleep quality, and health management. Many research institutes study the effects in the visible area and the non-visible area. By studying the impact, it is expected to improve the quality of human life. In this study, we plan to study ways to implement human-centered lighting by collecting sunrise and sunset data and linking commercialized LED packages and control devices with open-source hardware.

Always Space Antibacterial Technology Using a Luminaire Applied with a Visible Light Catalyst (가시광 촉매가 적용된 인간 중심 조명 장치를 이용한 상시 공간 항균 기술)

  • Doowon Jang;Chunghyeok Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.512-518
    • /
    • 2024
  • Titanium oxide (TiO2), a representative photocatalyst, reacts to ultraviolet ray energy and has antibacterial, deodorizing, and antifouling properties using superhydrophilic properties, so it is widely used in various industrial fields such as environmental purification, building exterior walls, and road facilities. However, due to the nature of the photocatalyst, it reacts to ultraviolet rays known to be harmful to the human body, and is designed to react to natural light outdoors and to ultraviolet light sources inside a sealed device indoors, so indoor space is extremely limited. This study aims to develop spatial antibacterial technology for everyday living spaces by researching methods for antibacterial and deodorization by reacting titanium oxide (TiO2)-based photocatalysts with the visible light range emitted from lighting devices in everyday spaces. Through the results of this study, it was verified through experiments that the photocatalyst exhibits antibacterial and deodorizing properties in response to lighting devices (LED, fluorescent lights, etc.) used in daily life. Based on the research results, we hope that various studies will be conducted to create a safer living environment by applying this technology to various fields such as large-scale complex facilities where an unspecified number of floating populations gather, airports, port waiting rooms, and public transportation.

Design and Implementation of LED Lighting Control System Using Arduino Yun and Cloud in IoT (사물인터넷에 아두이노 윤과 클라우드를 이용한 LED 조명 제어 시스템 설계)

  • Xu, Hao;Kim, Chul-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.983-988
    • /
    • 2016
  • Internet of Things Iranian people and things, things and things are connected through the Cloud. It can significantly save energy through a combination of LED lighting as a new ICT technologies and industry-to provide a human-centric, eco-friendly, and the content is embedded multifunction solutions that meet your needs, environment, implementation time according to user requirements, technology It can be systematized as converged next-generation lighting. In this paper, we have developed regarding whether the building in relation to the LED lighting control system using smart devices and Cloud-based user as a human connection through the board to the Arduino Yun lit LED lighting, wireless smart device or to the Cloud or off. After the Arduino Yun is connected to the Internet, taking the current date and time information from the Linux shell command used the way coming across the bridge (BRIDGE) its value.

Data-centric Smart Street Light Monitoring and Visualization Platform for Campus Management

  • Somrudee Deepaisarn;Paphana Yiwsiw;Chanon Tantiwattanapaibul;Suphachok Buaruk;Virach Sornlertlamvanich
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.216-224
    • /
    • 2023
  • Smart lighting systems have become increasingly popular in several public sectors because of trends toward urbanization and intelligent technologies. In this study, we designed and implemented a web application platform to explore and monitor data acquired from lighting devices at Thammasat University (Rangsit Campus, Thailand). The platform provides a convenient interface for administrative and operative staff to monitor, control, and collect data from sensors installed on campus in real time for creating geographically specific big data. Platform development focuses on both back- and front-end applications to allow a seamless process for recording and displaying data from interconnected devices. Responsible persons can interact with devices and acquire data effortlessly, minimizing workforce and human error. The collected data were analyzed using an exploratory data analysis process. Missing data behavior caused by system outages was also investigated.

A Systematic Review of the Attributes of Interior Design Affecting User's Positive Emotions Measured via Bio-Signals (생체신호 기반 사용자의 긍정적인 감정에 영향을 미치는 실내디자인 특성에 관한 문헌고찰)

  • Kim, Sieun;Ha, Mikyoung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.83-91
    • /
    • 2020
  • Environmental conditions are known to impact human health and behavior, emotions such as pleasure, anxiety, and depression, and reduce stress. Interior design that elevates emotional comfort and satisfaction can help improve mental health and well-being. This study is a systematic review that analyzed previous empirical studies that explored the effect of interior design elements on the user's emotional response which is quantitatively evaluated by bio-signal and qualitatively evaluated through self-reported questionnaire surveys. This paper aims to derive the attributes of interior design and biometric indicators that affect the user's positive emotion through the synthesis of previous studies and to confirm the feasibility of measuring bio-signals as an objective evaluation tool for architectural design and as a quantitative research method. As a result of the review, the biometric data from EEG, fMRI, ECG, EMG, GSR, and eye-tracking were used to measure the participants' emotional responses, which were manifested as positive or negative depending on certain attributes of interior design such as the form, color, lighting, material and furniture. The attributes of interior design related to the positive emotional response were the curved shape, high ceiling, openness of space, and subdued tone colors. Standard lighting conditions and wooden spaces were related to stress reduction in terms of comfort and relaxation. The free arrangement of furniture was related to the user's positive emotions. On the other hand, consistent experimental protocols could not be found, and although the sample sizes of the studies were small, the studies have demonstrated the feasibility of the emotional response measurement by using the biometric data. Therefore this method can be a useful objective tool in the measurement of human-centric data in architectural design, and to develop the evidence-based design to induce positive emotions and minimize stress.