DOI QR코드

DOI QR Code

Always Space Antibacterial Technology Using a Luminaire Applied with a Visible Light Catalyst

가시광 촉매가 적용된 인간 중심 조명 장치를 이용한 상시 공간 항균 기술

  • Doowon Jang (Department of Plasma-Bio and Display, Kwang-woon University) ;
  • Chunghyeok Kim (Department of Ingenium, Kwang-woon University)
  • 장두원 (광운대학교 대학원 플라즈마바이오디스플레이학과) ;
  • 김충혁 (광운대학교 인제니움학부)
  • Received : 2024.05.09
  • Accepted : 2024.05.21
  • Published : 2024.09.01

Abstract

Titanium oxide (TiO2), a representative photocatalyst, reacts to ultraviolet ray energy and has antibacterial, deodorizing, and antifouling properties using superhydrophilic properties, so it is widely used in various industrial fields such as environmental purification, building exterior walls, and road facilities. However, due to the nature of the photocatalyst, it reacts to ultraviolet rays known to be harmful to the human body, and is designed to react to natural light outdoors and to ultraviolet light sources inside a sealed device indoors, so indoor space is extremely limited. This study aims to develop spatial antibacterial technology for everyday living spaces by researching methods for antibacterial and deodorization by reacting titanium oxide (TiO2)-based photocatalysts with the visible light range emitted from lighting devices in everyday spaces. Through the results of this study, it was verified through experiments that the photocatalyst exhibits antibacterial and deodorizing properties in response to lighting devices (LED, fluorescent lights, etc.) used in daily life. Based on the research results, we hope that various studies will be conducted to create a safer living environment by applying this technology to various fields such as large-scale complex facilities where an unspecified number of floating populations gather, airports, port waiting rooms, and public transportation.

Keywords

References

  1. J. H. Kim, J. I. Bang, A. S. Choi, and M. K. Sung, J. Korean Inst. Archit. Sustainable Environ. Build. Syst., 13, 590 (2019). doi: https://doi.org/10.22696/jkiaebs.20190051
  2. J. I. Bang, J. H. Kim, and M. K. Su ng, Korean Soc. Living Environ. Syst., 26, 851 (2019). doi: https://doi.org/10.21086/ksles.2019.12.26.6.851
  3. J. I. Bang, J. H. Kim, A. S. Choi, and M. K. Sung, J. Korean Inst. Archit. Sustainable Environ. Build. Syst., 14, 756 (2020). doi: https://doi.org/10.22696/jkiaebs.20200064
  4. S. Y. Choi, Elastomers Compos., 48, 221 (2013). doi: https://doi.org/10.7473/EC.2013.48.3.221
  5. S. H. Park, Y. Choi, H. J. Lee, and C. G. Park, J. Environ. Health Sci., 47, 540 (2021). doi: https://doi.org/10.5668/JEHS.2021.47.6.540
  6. S. Y. Choi, Elastomers Compos., 48, 221 (2013). doi: https://doi.org/10.7473/ec.2013.48.3.221
  7. S. J. Lee, J. Archit. Inst. Korea, 38, 141 (2022). doi: https://doi.org/10.5659/JAIK.2022.38.2.141
  8. M. C. Kim, Anal. Sci. Technol., 24, 493 (2011). doi: https://doi.org/10.5806/AST.2011.24.6.493
  9. S. H. Lee and C. Y. Lee, Appl. Chem. Eng., 29, 298 (2018). doi: https://doi.org/10.14478/ace.2017.1129
  10. S. J. Park, J. W. Lee, S. S. Kim, and S. O. Lee, Text. Color. Finish., 30, 245 (2018). doi: https://doi.org/10.5764/TCF.2018.30.4.245
  11. S. Y. Choi and S. G. Yang, Elastomers Compos., 48, 209 (2013). doi: https://doi.org/10.7473/EC.2013.48.3.209