• 제목/요약/키워드: Human intelligence

검색결과 1,168건 처리시간 0.023초

유튜브 여행 동영상의 긍정적 감정과 부정적 감정이 사용자 참여에 미치는 영향 (The Differential Impacts of Positive and Negative Emotions on Travel-Related YouTube Video Engagement)

  • 김희진;송하연;유진영;최성철
    • 서비스연구
    • /
    • 제13권3호
    • /
    • pp.1-19
    • /
    • 2023
  • 여행 마케팅 분야에서 브이로그와 같은 동영상 기반 소셜미디어 컨텐츠의 중요성이 높아지고 있다. 그럼에도 불구하고 시청자 반응 및 참여 행동을 향상시키는 콘텐츠 특징에 대한 연구는 제한적이다. 본 연구는 유튜브 여행 콘텐츠의 나타난 감정이 시청자 참여 행동, 특히 "좋아요"와 "댓글" 작성에 미치는 영향을 연구하였다. 본 논문에서는 방문자 수가 높은 세계 8개 관광도시에 관한 여행 관련 유튜브 동영상 4,619개의 나래이션을 머신러닝으로 추출하여 텍스트화 한 후 음이항 회귀분석을 통해 분석하였다. 그 결과 긍정 감정 및 부정의 감정 모두 "좋아요" 수에 유의한 영향을 미쳤다. 즉, 동영상에서 나타난 긍정적인 감정과 부정적인 감정이 각각 높을수록 더 많은 시청자들이 "좋아요"를 클릭하는 것으로 나타났다. 댓글 수에 측면에서는 부정적인 감정만 유의한 영향을 보인 반면 긍정적인 감정은 유의한 영향을 미치지 않는 것으로 나타났다. 본 연구는 경험재인 여행 상품의 고유한 특성을 고려할 때 유튜브에서 시청자 참여를 높이고자 하는 마케터들에게 어떠한 동영상 특징이 "좋아요"와 댓글등의 참여 행동을 유도할 수 있는지를 이해하고 전략 수립에 도움을 준다는 면에서 시사하는 바가 크다. 또한 소셜 미디어, 특히 유튜브의 맥락에서 시청자 참여도에 미치는 감정의 영향력을 검증하였다. 향후에는 감정에 대한 긍정-부정의 분류를 넘어 특정 감정이 참여도에 미치는 영향에 대한 고찰을 통해 소셜 미디어 동영상에 나타난 감정의 역할에 대한 이해를 깊이 할 수 있을 것이다.

거대언어모델의 차별문제 비교 연구 (A Comparative Study on Discrimination Issues in Large Language Models)

  • 이위;황경화;최지애;권오병
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.125-144
    • /
    • 2023
  • 최근 ChatGPT 등 거대언어모델(Large Language Models)의 활용은 대화형상거래, 모바일금융 서비스 등 다양한 분야에서 사용이 증가하고 있다. 그러나 주로 기존 문서를 학습하여 만들어진 거대언어모델은 문서에 내재된 인간의 다양한 편향까지도 학습할 수 있다. 그럼에도 불구하고 거대언어모델에 편향과 차별의 양상에 대한 비교연구는 거의 이루어지지 않았다. 이에 본 연구의 목적은 거대언어모델안에 9가지 차별(Age, Disability status, Gender identity, Nationality, Physical appearance, Race ethnicity, Religion, Socio-economic status, Sexual orientation)의 존재유무 또는 그 정도를 점검하고 발전 방안을 제안하는 것이다. 이를 위해 차별 양상을 특정하기 위한 도구인 BBQ (Bias Benchmark for QA)를 활용하여 ChatGPT, GPT-3, Bing Chat 등 세가지 거대언어모델을 대상으로 비교하였다. 평가 결과 거대언어모델에 적지 않은 차별적 답변이 관찰되었으며, 그 양상은 거대언어모델에 따라 차이가 있었다. 특히 성차별, 인종차별, 경제적 불평등 등 전통적인 인공지능 윤리 이슈가 아닌 노인차별, 장애인차별에서 문제점이 노출되어, 인공지능 윤리의 새로운 관점을 찾을 수 있었다. 비교 결과를 기반으로 추후 거대언어모델의 보완 및 발전 방안에 대해 기술하였다.

대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용 (Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity)

  • 이정원;임일
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.267-286
    • /
    • 2023
  • 인공지능 스피커로 대표되는 대화형 에이전트는 사람-컴퓨터 간 대화형이기 때문에 대화 상황에서 오류가 발생하는 경우가 잦다. 에이전트 사용자의 발화 기록에서 인식오류는 사용자의 발화를 제대로 인식하지 못하는 미인식오류 유형과 발화를 인식하여 서비스를 제공하였으나 사용자가 의도한 바와 다르게 인식된 오인식오류 유형으로 나뉜다. 이 중 오인식오류의 경우, 서비스가 제공된 것으로 기록되기 때문에 이에 대한 오류 탐지가 별도로 필요하다. 본 연구에서는 텍스트 마이닝 기법 중에서도 단어와 문서를 벡터로 바꿔주는 단어 임베딩과 문서 임베딩을 이용하여 단순 사용된 단어 기반의 유사도 산출이 아닌 단어의 분리 방식을 다양하게 적용함으로써 연속 발화 쌍의 유사도를 기반으로 새로운 오인식오류 및 신조어 탐지 방법을 탐구하였다. 연구 방법으로는 실제 사용자 발화 기록을 활용하여 오인식오류의 패턴을 모델 학습 및 생성 시 적용하여 탐지 모델을 구현하였다. 그 결과, 오인식오류의 가장 큰 원인인 등록되지 않은 신조어 사용을 탐지할 수 있는 패턴 방식으로 다양한 단어 분리 방식 중 초성 추출 방식이 가장 좋은 결과를 보임을 확인하였다. 본 연구는 크게 두 개의 함의를 가진다. 첫째, 인식오류로 기록되지 않아 탐지가 어려운 오인식오류에 대하여 다양한 방식 별 비교를 통해 최적의 방식을 찾았다. 둘째, 이를 실제 신조어 탐지 적용이 필요한 대화형 에이전트나 음성 인식 서비스에 적용한다면 음성 인식 단계에서부터 발생하는 오류의 패턴도 구체화할 수 있으며, 오류로 분류되지 않더라도 사용자가 원하는 결과에 맞는 서비스가 제공될 수 있음을 보였다.

딥러닝 기반 CT 스캔 재구성을 통한 조영제 사용 및 신체 부위 분류 성능 향상 연구 (A Study on the Use of Contrast Agent and the Improvement of Body Part Classification Performance through Deep Learning-Based CT Scan Reconstruction)

  • 나성원;고유선;김경원
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.293-301
    • /
    • 2023
  • 표준화되지 않은 의료 데이터 수집 및 관리는 여전히 수동으로 진행되고 있어, 이 문제를 해결하기 위해 딥 러닝을 사용해 CT 데이터를 분류하는 연구들이 진행되고 있다. 하지만 대부분 연구에서는 기본적인 CT slice인 axial 평면만을 기반으로 모델을 개발하고 있다. CT 영상은 일반 이미지와 다르게 인체 구조만 묘사하기 때문에 CT scan을 재구성하는 것만으로도 더 풍부한 신체적 특징을 나타낼 수 있다. 이 연구는 axial 평면뿐만 아니라 CT 데이터를 2D로 변환하는 여러가지 방법들을 통해 보다 높은 성능을 달성할 수 있는 방법을 찾고자 한다. 훈련은 5가지 부위의 CT 스캔 1042개를 사용했고, 모델 평가를 위해 테스트셋 179개, 외부 데이터셋으로 448개를 수집했다. 딥러닝 모델 개발을 위해 ImageNet으로 사전 학습된 InceptionResNetV2를 백본으로 사용하였으며, 모델의 전체 레이어를 재 학습했다. 실험결과 신체 부위 분류에서는 재구성 데이터 모델이 99.33%를 달성하며 axial 모델보다 1.12% 더 높았고, 조영제 분류에서는 brain과 neck에서만 axial모델이 높았다. 결론적으로 axial slice로만 훈련했을 때 보다 해부학적 특징이 잘 나타나는 데이터로 학습했을 때 더 정확한 성능 달성이 가능했다.

작물의 병충해 분류를 위한 이미지 활용 방법 연구 (Study on Image Use for Plant Disease Classification)

  • 정성호;한정은;정성균;봉재환
    • 한국전자통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.343-350
    • /
    • 2022
  • 서로 다른 특징을 가지는 이미지를 통합하여 작물의 병충해 분류를 위한 심층신경망을 훈련하는 것이 학습 결과에 어떤 영향을 미치는지 확인하고, 심층신경망의 학습 결과를 개선할 수 있는 이미지 통합방법에 대해 실험하였다. 실험을 위해 두 종류의 작물 이미지 공개 데이터가 사용되었다. 하나는 인도의 실제 농장 환경에서 촬영된 작물 이미지이고 다른 하나는 한국의 실험실 환경에서 촬영한 작물 이미지였다. 작물 잎 이미지는 정상인 경우와 4종류의 병충해를 포함하여 5개의 하위 범주로 구성되었다. 심층신경망은 전이학습을 통해 사전 훈련된 VGG16이 특징 추출부에 사용되었고 분류기에는 다층퍼셉트론 구조를 사용하였다. 두 공개 데이터는 세 가지 방법으로 통합되어 심층신경망의 지도학습에 사용되었다. 훈련된 심층신경망은 평가 데이터를 이용해 평가되었다. 실험 결과에 따르면 심층신경망을 실험실 환경에서 촬영한 작물 이미지로 학습한 이후에 실제 농장 환경에서 촬영한 작물 이미지로 재학습하는 경우에 가장 좋은 성능을 보였다. 서로 다른 배경의 두 공공데이터를 혼용하여 사용하면 심층신경망의 학습 결과가 좋지 않았다. 심층신경망의 학습 과정에서 여러 종류의 데이터를 사용하는 방법에 따라 심층신경망의 성능이 달라질 수 있음을 확인하였다.

고고 디지털 아카이브 구축의 과제와 전략 (Strategies and Challenges in Digitizing Archaeological Data)

  • 김범철
    • 헤리티지:역사와 과학
    • /
    • 제56권1호
    • /
    • pp.6-19
    • /
    • 2023
  • 자료관리와 정보력이 국력의 척도가 되었으나, 디지털 기술에의 의존 증대로 인한 위험마저 높아진 미묘한 상황을 맞고 있다. 그런 변화의 속도가 빠른 만큼 기존 자료의 디지털 전환 및 디지털 자료관리의 중요성도 급격히 증대되고 있다. 고고자료와 정보도 예외일 수는 없다. 과거에 산발적으로 이루어지던 디지털화를 좀 더 전면적이고 체계적으로 신속하게 수행하지 않을 수 없게 되었다. 그런 작업의 효과적인 진행을 위해서는, 디지털 아카이브에 포함될 고고자료의 특징에 대한 분명한 인식이 선행되어야 할 듯하다. 고고자료는 발굴이라는 원천을 파괴하는 과정을 통해 자료가 생성된다는 점, 장구한 시간대에 걸친 다방면의 인류 과거 경험을 연구 대상으로 하는바, 축적되는 자료의 종류가 다각적이고 그 양이 방대할 수밖에 없다는 점, 원본 수기자료(사진, 도면, 야장 등)의 자연적 소멸에 따른 피해가 심각하다는 점 등을 특징으로 한다. 이러한 특징은 디지털 암흑기를 맞을 경우, 원상 복구의 어려움이 상상을 초월할 정도로 커지게 할 수밖에 없다. 현재 경향과 자료의 특성을 동시에 고려해야만 지속가능한 고고 디지털 아카이브의 구축의 전략이 수립될 것이다. 필자는 소비자인 인문학도의 입장에서 ① 디지털 관리책무 체제 확충, ② 활용성에 대한 인식과 역량의 제고, ③ (국제) 공조적 체계의 구축, ④ 디지털고고학 플랫폼으로의 도약 등을 그 전략으로 제안한다.

제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증 (Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers)

  • 강영진;노태경;김기환;정석찬
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.49-59
    • /
    • 2023
  • 제조업의 안전보건 기준은 다양한 항목이 존재하지만, 질병 재해자 기준에서 업무상 질병과 근골격계 질환으로 나눌 수 있다. 이 중 근골격계 질환은 제조업에서 가장 많이 발생하며, 나아가서 제조 현장의 노동생산성감소 및 경쟁력 약화까지 유발할 수 있어서 이를 사전에 확인할 수 있는 시스템이 필요한 실정이다. 본 논문에서는 제조업 노동자의 근골격계 유해 요인을 검출하기 위하여 근골격계 부담작업 요인 분석 데이터 속성, 유해 요인 작업자세, 관절 키포인트를 정의하고 인공지능 학습용 데이터를 구축하였다. 구축한 데이터의 유효성을 판단하기 위해서 YOLO, Dite-HRNet, EfficientNet 등의 AI 알고리즘을 활용하여 학습하고 검증하였다. 실험 결과 사람 탐지 정확도는 99%, 탐지된 사람의 관절 위치 추론 정확도는 @AP0.5 88%, 추론된 관절 위치를 종합하여 자세를 평가한 정확도는 LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, LOWERARM 92.7%를 도출하였으며, 추가로 딥러닝 기반의 근골격계 질병을 예방할 수 있는 연구에 필요한 요소를 고찰하였다.

서비스주의 민주주의 모델 연구 (A Servicism Model for A New Democracy)

  • 김현수
    • 서비스연구
    • /
    • 제12권1호
    • /
    • pp.1-24
    • /
    • 2022
  • 본 연구는 현대 대의제 대중민주주의의 개선안 도출을 위해 수행되었다. 본래의 민주주의 모델인 이소노미아(isonomia)가 퇴색하고 대중이 통치하는 데모크라시(democracy)로 현대 민주주의가 운영되면서 민주주의시스템의 문제가 심화되고 있다. 다수결 승자독식주의와 자본주의 경제시스템이 야기하는 경제적 불평등으로 인해 민주주의는 더욱 큰 문제를 드러내고 있다. 현대의 평등 정신에 의해 모든 대중이 동등한 자격의 주권자가 되는 대중민주주의는 선동가들이 권력을 장악하기 쉬운 구조다. 경제 문제를 스스로 해결하고 정직성과 용기 헌신 희생 성실성을 가진 자유인들이 동동한 자격으로 법률을 정하고, 그 법을 스스로 지키는 이소노미아는 자유인들의 양심과 덕성에 크게 의존한 시스템인데 비해, 현대 대중 민주주의는 경제력과 무관하게 주권자의 절대 평등성은 구현하였지만, 공동체에 대한 희생정신과 헌신이 없이도 주권자나 공직자가 되어 권리를 누리고 이기심을 채울 수 있는 구조가 되었다. 본 연구는 이소노미아의 본질을 구현하면서 현대 대의제 대중민주주의의 장점을 유지할 수 있는 제도로서 서비스주의 민주주의를 제시하였다. 재산 유무와 관계없이 모두에게 공평한 덕성 자격 요건을 중심으로 시스템을 구현하였다. 인간의 불완전성은 인공지능의 활용으로 보완하였다. 주권자와 공직자 대리인의 본성에 대한 가정을 새롭게 정립하고, 승자독식주의 문제를 해결하였다. 본 연구는 인류 공통원리와 서비스철학을 기반으로 하는 서비스주의 민주주의를 통해 이소노미아의 철학과 대중민주주의의 장점이 동시에 구현될 수 있음을 입증하였다. 자본주의가 20세기에 수정자본주의로 개선되었듯이, 21세기에는 현재 대중민주주의가 수정민주주의인 서비스주의 민주주의로 발전될 필요가 있다.

담수 유해남조 세포수·대사물질 농도 예측을 위한 머신러닝과 딥러닝 모델링 연구동향: 알고리즘, 입력변수 및 학습 데이터 수 비교 (Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number)

  • 박용은;김진휘;이한규;변서현;황순진;신재기
    • 생태와환경
    • /
    • 제56권3호
    • /
    • pp.268-279
    • /
    • 2023
  • 근래에 들어, 머신러닝과 딥러닝 모델은 다양한 수체 내 수질변화를 예측하기 위해 광범위하게 사용되고 있다. 특히, 담수호의 물 이용과 수생태계 건강성에 위협 요인으로 작용할 수 있는 유해남조의 발생을 예측하기 위해 많은 연구자들이 인공지능 모델을 활용하고 있다. 따라서, 본 연구에서는 최근까지 유해남조의 발생을 예측하기 위해 적용된 인공지능 모델링의 선행 연구들을 검토하였고, 딥러닝을 포함하여 머신러닝 모델을 이용한 이 분야 연구의 발전방향을 모색하고자 하였다. 먼저, Elsevier의 초록 인용 데이터베이스인 Scopus를 활용하여 체계적인 문헌 연구를 수행하였다. 주요 키워드를 이용하여 탐색 및 정리된 문헌들을 리뷰한 결과, 딥러닝 모델은 주로 남조 세포수 예측에만 사용되었고, 머신러닝 모델은 남조 세포수 이외에 microcystin, geosmin, 2-MIB와 같은 대사물질 예측에도 초점을 맞추고 있었다. 또한, 남조 세포수와 대사물질의 예측을 위해 활용된 입력변수들은 현저한 차이가 있었다. 남조의 대사물질을 예측하기 위해 딥러닝 모델이 적용된 바가 없었는데, 향후 빅데이터 구축을 통한 대사물질을 예측하는 연구가 필요할 것으로 사료된다.

스마트홈 개인화 서비스에 대한 가치 인식 및 사용의도에의 영향 요인: "MZ세대"와 "X세대 및 베이비붐 세대" 간 차이 분석 (The Factors Influencing Value Awareness of Personalized Service and Intention to Use Smart Home: An Analysis of Differences between "Generation MZ" and "Generation X and Baby Boomers")

  • 이상걸;이애리
    • 경영정보학연구
    • /
    • 제23권3호
    • /
    • pp.201-223
    • /
    • 2021
  • 스마트홈(Smart Home)은 일상생활에서의 편의성을 높이고 가정에서의 삶의 질을 향상시킬 수 있도록 하는 첨단 사물인터넷(IoT) 서비스이다. 최근 인공지능(AI) 기술이 적용된 스마트홈 서비스가 등장하면서 그에 대한 관심이 더욱 증가하고 있다. 스마트홈 시장에서의 경쟁 우위 선점을 위해, 기업들은 사용자들에게 맞춤형 "개인화 서비스"를 제공하고 있으며, 이는 스마트홈 사용을 보다 촉진할 수 있는 핵심 서비스라 할 수 있다. 본 연구는 스마트홈 개인화 서비스에 대한 가치 인식과 사용의도에 대한 영향 요인을 고찰하고자 한다. 본 연구에서는 스마트홈 개인화 서비스에 대한 가치 인식에 영향을 주는 핵심 요인으로 4가지 차원의 동기화된 혁신성(인지적, 기능적, 쾌락적, 사회적 혁신성)과 프라이버시 위험 인식에 초점을 두고 그 영향력을 분석하였다. 특히 본 연구에서는 최근 사회형태적으로 차별화된 특징을 보이고 있는 MZ세대(10후반~30대의 젊은 층)와 40~50대 이상의 X세대 및 베이비붐 세대 간 차이점이 있는지 비교 분석하였다. 이를 통해, 기성세대와 다른 MZ세대가 보이는 차별적 특징을 도출하고, 스마트홈 서비스 사용 활성화를 위한 학문적·실무적 시사점을 제공하고자 한다.