• Title/Summary/Keyword: Human genetics

Search Result 556, Processing Time 0.024 seconds

Identification and Characterization of Calcineurin Targets in Cryptococcus neoformans

  • Park, Hee-Soo;Heitman, Joseph;Cardenas, Maria E.
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.17-17
    • /
    • 2016
  • Calcineurin governs stress survival, sexual differentiation, and virulence of the human fungal pathogen Cryptococcus neoformans. Herein, we identified and characterized calcineurin substrates in C. neoformans by employing phosphoproteomic $TiO_2$ enrichment and quantitative mass spectrometry. The identified targets include the zinc finger transcription factor Crz1 and proteins whose functions are linked to P-bodies/stress granules (PBs/SGs) and mRNA translation and decay, such as Pbp1 and Puf4. We show that Crz1 is a bona fide calcineurin substrate, and localization and transcriptional activity of Crz1 are controlled by calcineurin. Several of the calcineurin targets localized to PBs/SGs, including Puf4 and Pbp1, and are required for survival at high temperature and for virulence. Genetic epistasis analysis revealed that Crz1 and the novel targets Lhp1, Puf4, and Pbp1 function in a branched calcineurin pathway that orchestrates stress survival and virulence. These findings propose that calcineurin controls thermal stress and virulence at the transcriptional level via Crz1 and post-transcriptionally by regulating target factors involved in mRNA metabolism.

  • PDF

Recent advances in breeding and genetics for dairy goats

  • Gipson, Terry A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1275-1283
    • /
    • 2019
  • Goats (Capra hircus) were domesticated during the late Neolithic, approximately 10,500 years ago, and humans exerted minor selection pressure until fairly recently. Probably the largest genetic change occurring over the millennia happened via natural selection and random genetic drift, the latter causing genes to be fixed in small and isolated populations. Recent human-influenced genetic changes have occurred through biometrics and genomics. For the most part, biometrics has concentrated upon the refining of estimates of heritabilities and genetic correlations. Heritabilities are instrumental in the calculation of estimated breeding values and genetic correlations are necessary in the construction of selection indices that account for changes in multiple traits under selection at one time. Early genomic studies focused upon microsatellite markers, which are short tandem repeats of nucleic acids and which are detected using polymerase chain reaction primers flanking the microsatellite. Microsatellite markers have been very important in parentage verification, which can impact genetic progress. Additionally, microsatellite markers have been a useful tool in assessing genetic diversity between and among breeds, which is important in the conservation of minor breeds. Single nucleotide polymorphisms are a new genomic tool that have refined classical BLUP methodology (biometric) to provide more accurate genomic estimated breeding values, provided a large reference population is available.

Waardenburg Syndrome Type IV De Novo SOX10 Variant Causing Chronic Intestinal Pseudo-Obstruction

  • Hogan, Anthony R.;Rao, Krishnamurti A.;Thorson, Willa L.;Neville, Holly L.;Sola, Juan E.;Perez, Eduardo A.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.5
    • /
    • pp.487-492
    • /
    • 2019
  • Waardenburg syndrome (WS) type IV is characterized by pigmentary abnormalities, deafness and Hirschsprung's disease. This syndrome can be triggered by dysregulation of the SOX10 gene, which belongs to the SOX (SRY-related high-mobility group-box) family of genes. We discuss the first known case of a SOX10 frameshift mutation variant defined as c.895delC causing WS type IV without Hirschsprung's disease. This female patient of unrelated Kuwaiti parents, who tested negative for cystic fibrosis and Hirschsprung's disease, was born with meconium ileus and malrotation and had multiple surgical complications likely due to chronic intestinal pseudo-obstruction. These complications included small intestinal necrosis requiring resection, development of a spontaneous fistula between the duodenum and jejunum after being left in discontinuity, and short gut syndrome. This case and previously reported cases demonstrate that SOX10 gene sequencing is a consideration in WS patients without aganglionosis but with intestinal dysfunction.

The Chromatin Accessibility Landscape of Nonalcoholic Fatty Liver Disease Progression

  • Kang, Byeonggeun;Kang, Byunghee;Roh, Tae-Young;Seong, Rho Hyun;Kim, Won
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.343-352
    • /
    • 2022
  • The advent of the assay for transposase-accessible chromatin using sequencing (ATAC-seq) has shown great potential as a leading method for analyzing the genome-wide profiling of chromatin accessibility. A comprehensive reference to the ATAC-seq dataset for disease progression is important for understanding the regulatory specificity caused by genetic or epigenetic changes. In this study, we present a genome-wide chromatin accessibility profile of 44 liver samples spanning the full histological spectrum of nonalcoholic fatty liver disease (NAFLD). We analyzed the ATAC-seq signal enrichment, fragment size distribution, and correlation coefficients according to the histological severity of NAFLD (healthy control vs steatosis vs fibrotic nonalcoholic steatohepatitis), demonstrating the high quality of the dataset. Consequently, 112,303 merged regions (genomic regions containing one or multiple overlapping peak regions) were identified. Additionally, we found differentially accessible regions (DARs) and performed transcription factor binding motif enrichment analysis and de novo motif analysis to determine new biomarker candidates. These data revealed the gene-regulatory interactions and noncoding factors that can affect NAFLD progression. In summary, our study provides a valuable resource for the human epigenome by applying an advanced approach to facilitate diagnosis and treatment by understanding the non-coding genome of NAFLD.

Lack of Mutation in p53 and H-ras Genes in Phenytoin Induced Gingival Overgrowth Suggests its Non Cancerous Nature

  • Jayaraman, Bhaskar;Valiathan, Gopalakrishnan Mohan;Jayakumar, Keerthivasan;Palaniyandi, Arunmozhi;Thenumgal, Siji Jacob;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5535-5538
    • /
    • 2012
  • Background: There have been case reports of oral squamous cell carcinoma arising from gingival overgrowth induced by phenytoin - an antiepileptic drug. However, a detailed analysis for the presence of mutations in p53 and ras genes, which are the two most frequently mutated genes in cancers, in phenytoin induced gingival overgrowth tissues has hitherto not been performed. Methods: Cellular DNA isolated from twenty gingival overgrowth tissues collected from patients undergoing phenytoin therapy were amplified using primers for p53 (exons 5-8) and H-ras (exons 1-2) genes. The PCR amplicons were then gel purified and subjected to direct sequencing analysis to screen for mutations. Results: Direct sequencing of twenty samples of phenytoin induced gingival growth did not identify mutations in any of the exons of p53 and H-ras genes that were analyzed. Conclusion: Our result indicates that mutational alteration of p53 and H-ras genes is infrequent in phenytoin induced gingival growth, which thus suggests a non malignant nature of this pathology. The findings in the present study are clinically significant as a large number of epileptic patients are treated with phenytoin.

Lack of Mutations in Protein Tyrosine Kinase Domain Coding Exons 19 and 21 of the EGFR Gene in Oral Squamous Cell Carcinomas

  • Mehta, Dhaval Tushar;Annamalai, Thangavelu;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4623-4627
    • /
    • 2014
  • Background: The epidermal growth factor receptor (EGFR) plays a vital role in the activation and inactivation of receptor tyrosine kinases. Mutations in exons 19 and 21 of EGFR are commonly found to be associated with non small cell lung carcinoma and triple negative breast cancer, enhancing sensitivity to EGFR targeting chemotherapeutic agents. Since amplification and prolonged activation of EGFR molecules have been identified in oral squamous cell carcinomas (OSCC), we investigated whether OSCCs carried mutations in exons 19 and 21 of EGFR to their incidence. Materials and Methods: Tumor chromosomal DNA isolated from forty surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking exons 19 and 21 of the EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Results: Data analysis of the EGFR exon 19 and 21 coding sequences did not show any mutations in the forty OSCC samples that were analyzed. Conclusions: To the best of our knowledge, this is the first study to have investigated the genetic status of exons 19 and 21 of EGFR in Indian OSCCs and identified that mutation in EGFR exon 19 and 21 may not contribute towards their genesis. The absence of mutations also indicates that oral cancerous lesions may not be as sensitive as other cancers to chemotherapeutic agents targeting EGFR.

Epithelial-Specific SHP1-P2 Methylation - a Novel Universal Tumor Marker for Detection of Colorectal Cancer Lymph Node Metastasis

  • Rattanatanyong, Prakasit;Keelawat, Somboon;Kitkumthorn, Nakarin;Mutirangura, Apiwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4117-4123
    • /
    • 2016
  • Background: Methylation of promoter 2 of the SHP1 gene is epithelial cell specific, with reported potential as a lymph node metastatic marker. Objective: To demonstrate SHP1-P2 methylation-specific quantitative PCR effectiveness in detecting colorectal cancer (CRC) DNA in lymph nodes. Materials and Methods: SHP1-P2 methylation levels were measured in lymph nodes of CRC patients and compared with pathological findings and patient prognosis. Results: Lymph nodes of CRC metastatic patients without microscopically detectable cancer cells had higher SHP1-P2 methylation levels than lymph nodes of controls (p<0.001). In addition, a higher SHP1-P2 methylation level was associated with a shorter duration until adverse disease events, metastasis, recurrence and death (r2 = 0.236 and p value = 0.048). Studying two cohorts of 74 CRC patients without microscopic lymph node metastases showed that only the cohort containing samples with high SHP1-P2 methylation levels had a significant hazard ratio of 3.8 (95%CI = 1.02 to 14.2). Conclusions: SHP1-P2 methylation PCR can detect CRC DNA in lymph nodes even if cancer cells are not visible under a microscope, confirming applicability as a potential universal lymph node metastatic marker.

Osteoblast differentiation of human bone marrow stromal cells (hBMSC) according to age for bone tissue engineering (조직공학 재생골을 위한 연구에서 사람 골수 기원 간엽줄기세포의 나이에 따른 조골세포 분화능에 관한 연구)

  • Song, Gin-Ah;Ryoo, Hyun-Mo;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.243-249
    • /
    • 2010
  • Tissue engineered bone (TEB) can replace an autogenous bone graft requiring an secondary operation site as well as avoid complications like inflammation or infection from xenogenic or synthetic bone graft. Adult mesenchymal stem cells (MSC) for TEB are considered to have various ranges of differentiation capacity or multipotency by the donor site and age. This study examined the effect of age on proliferation capacity, differentiation capacity and bone morphogenetic protein-2 (BMP-2) responsiveness of human bone marrow stromal cells (hBMSC) according to the age. In addition, to evaluate the effect on enhancement for osteoblast differentiation, the hBMSC were treated with Trichostatin A (TSA) and 5-Azacitidine (5-AZC) which was HDAC inhibitors and methyltransferase inhibitors respectively affecting chromatin remodeling temporarily and reversibly. The young and old group of hBMSC obtained from the iliac crest from total 9 healthy patients, showed similar proliferation capacity. Cell surface markers such as CD34, CD45, CD90 and CD105 showed uniform expression regardless of age. However, the young group showed more prominent transdifferentiation capacity with adipogenic differentiation. The osteoblast differentiation capacity or BMP responsiveness was low and similar between young and old group. TSA and 5-AZC showed potential for enhancing the BMP effect on osteoblast differentiation by increasing the expression level of osteogenic master gene, such as DLX5, ALP. More study will be needed to determine the positive effect of the reversible function of HDAC inhibitors or methyltransferase inhibitors on enhancing the low osteoblast differentiation capacity of hBMSC.

CCNA1 Promoter Methylation: a Potential Marker for Grading Papanicolaou Smear Cervical Squamous Intraepithelial Lesions

  • Chujan, Suthipong;Kitkumthorn, Nakarin;Siriangkul, Sumalee;Mutirangura, Apiwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7971-7975
    • /
    • 2014
  • Background: From our previous study, we established that cyclin A1 (CCNA1) promoter methylation is strongly correlated with multistep progression of HPV-associated cervical cancer, suggesting potential use as a diagnostic maker of disease. Objectives: The purpose of the present study was to assess the prevalence of CCNA1 promoter methylation in residual cervical cells isolated from liquid-based cytology that underwent hrHPV DNA screening for cervical cancer, and then to evaluate this marker for diagnostic accuracy using parameters like sensitivity, specificity, predictive values and likelihood ratio. Methods: In this retrospective study, histopathology was used as the gold standard method with specimens separated into the following groups: negative (n=31), low-grade squamous intraepithelial lesions (LSIL, n=34) and high-grade squamous intraepithelial lesions or worse (HSIL+, n=32). The hrHPV was detected by Hybrid Capture 2 (HC2) and CCNA1 promoter methylation was examined by CCNA1 duplex methylation specific PCR. Results: The results showed the frequencies of CCNA1 promoter methylation were 0%, 5.88% and 83.33%, while the percentages of hrHPV were 66.67%, 82.35% and 100% in the negative, LSIL and HSIL+ groups, respectively. Although hrHPV infection showed high frequency in all three groups, it could not differentiate between the different groups and grades of precancerous lesions. In contrast, CCNA1 promoter methylation clearly distinguished between negative/LSIL and HSIL+, with high levels of all statistic parameters. Conclusion: CCNA1 promoter methylation is a potential marker for distinguishing between histologic negative/LSIL and HSIL+using cervical cytology samples.