DOI QR코드

DOI QR Code

The Chromatin Accessibility Landscape of Nonalcoholic Fatty Liver Disease Progression

  • Kang, Byeonggeun (Department of Biological Sciences, Institute of Molecular Biology & Genetics, Seoul National University) ;
  • Kang, Byunghee (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Roh, Tae-Young (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Seong, Rho Hyun (Department of Biological Sciences, Institute of Molecular Biology & Genetics, Seoul National University) ;
  • Kim, Won (Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine)
  • Received : 2022.01.03
  • Accepted : 2022.01.10
  • Published : 2022.05.31

Abstract

The advent of the assay for transposase-accessible chromatin using sequencing (ATAC-seq) has shown great potential as a leading method for analyzing the genome-wide profiling of chromatin accessibility. A comprehensive reference to the ATAC-seq dataset for disease progression is important for understanding the regulatory specificity caused by genetic or epigenetic changes. In this study, we present a genome-wide chromatin accessibility profile of 44 liver samples spanning the full histological spectrum of nonalcoholic fatty liver disease (NAFLD). We analyzed the ATAC-seq signal enrichment, fragment size distribution, and correlation coefficients according to the histological severity of NAFLD (healthy control vs steatosis vs fibrotic nonalcoholic steatohepatitis), demonstrating the high quality of the dataset. Consequently, 112,303 merged regions (genomic regions containing one or multiple overlapping peak regions) were identified. Additionally, we found differentially accessible regions (DARs) and performed transcription factor binding motif enrichment analysis and de novo motif analysis to determine new biomarker candidates. These data revealed the gene-regulatory interactions and noncoding factors that can affect NAFLD progression. In summary, our study provides a valuable resource for the human epigenome by applying an advanced approach to facilitate diagnosis and treatment by understanding the non-coding genome of NAFLD.

Keywords

Acknowledgement

This research was supported by the Collaborative Genome Program for Fostering New Post-Genome Industry of the National Research Foundation (NRF) and funded by the Ministry of Science and ICT (MIST) (NRF-2017M3C9A6044199) (R.H.S.). This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MEST) (2021R1A2C2005820, 2021M3A9E4021818) (W.K.).

References

  1. Amemiya, H.M., Kundaje, A., and Boyle, A.P. (2019). The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354. https://doi.org/10.1038/s41598-019-45839-z
  2. Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S. (2015). The MEME Suite. Nucleic Acids Res. 43(W1), W39-W49. https://doi.org/10.1093/nar/gkv416
  3. Brunt, E.M., Janney, C.G., Di Bisceglie, A.M., Neuschwander-Tetri, B.A., and Bacon, B.R. (1999). Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 94, 2467-2474. https://doi.org/10.1016/S0002-9270(99)00433-5
  4. Brunt, E.M., Kleiner, D.E., Wilson, L.A., Belt, P., Neuschwander-Tetri, B.A., and NASH Clinical Research Network (CRN) (2011). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810-820. https://doi.org/10.1002/hep.24127
  5. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218. https://doi.org/10.1038/nmeth.2688
  6. Choi, W.Y., Hwang, J.H., Cho, A.N., Lee, A.J., Jung, I., Cho, S.W., Kim, L.K., and Kim, Y.J. (2020). NEUROD1 intrinsically initiates differentiation of induced pluripotent stem cells into neural progenitor cells. Mol. Cells 43, 1011-1022. https://doi.org/10.14348/molcells.2020.0207
  7. Cholankeril, G., Patel, R., Khurana, S., and Satapathy, S.K. (2017). Hepatocellular carcinoma in non-alcoholic steatohepatitis: current knowledge and implications for management. World J. Hepatol. 9, 533-543. https://doi.org/10.4254/wjh.v9.i11.533
  8. Corces, M.R., Trevino, A.E., Hamilton, E.G., Greenside, P.G., Sinnott-Armstrong, N.A., Vesuna, S., Satpathy, A.T., Rubin, A.J., Montine, K.S., Wu, B., et al. (2017). An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959-962. https://doi.org/10.1038/nmeth.4396
  9. Elbadawy, M., Yamanaka, M., Goto, Y., Hayashi, K., Tsunedomi, R., Hazama, S., Nagano, H., Yoshida, T., Shibutani, M., Ichikawa, R., et al. (2020). Efficacy of primary liver organoid culture from different stages of non-alcoholic steatohepatitis (NASH) mouse model. Biomaterials 237, 119823. https://doi.org/10.1016/j.biomaterials.2020.119823
  10. Gelbart, M.E., Larschan, E., Peng, S., Park, P.J., and Kuroda, M.I. (2009). Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat. Struct. Mol. Biol. 16, 825-832. https://doi.org/10.1038/nsmb.1644
  11. Govaere, O., Cockell, S., Tiniakos, D., Queen, R., Younes, R., Vacca, M., Alexander, L., Ravaioli, F., Palmer, J., Petta, S., et al. (2020). Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci. Transl. Med. 12, eaba4448. https://doi.org/10.1126/scitranslmed.aba4448
  12. Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J.A., van der Lee, R., Bessy, A., Cheneby, J., Kulkarni, S.R., Tan, G., et al. (2018). JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46(D1), D260-D266. https://doi.org/10.1093/nar/gkx1126
  13. Kim, E., Kim, D., Lee, J.S., Yoe, J., Park, J., Kim, C.J., Jeong, D., Kim, S., and Lee, Y. (2018). Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4-MMP1 axis. Hepatology 67, 2287-2301. https://doi.org/10.1002/hep.29738
  14. Kim, J.Y., Park, K.J., Hwang, J.Y., Kim, G.H., Lee, D., Lee, Y.J., Song, E.H., Yoo, M.G., Kim, B.J., Suh, Y.H., et al. (2017). Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis. J. Hepatol. 67, 349-359. https://doi.org/10.1016/j.jhep.2017.03.023
  15. Kleiner, D.E., Brunt, E.M., Van Natta, M., Behling, C., Contos, M.J., Cummings, O.W., Ferrell, L.D., Liu, Y.C., Torbenson, M.S., Unalp-Arida, A., et al. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313-1321. https://doi.org/10.1002/hep.20701
  16. Lake, A.D., Chaput, A.L., Novak, P., Cherrington, N.J., and Smith, C.L. (2016). Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis. Biochem. Pharmacol. 122, 62-71. https://doi.org/10.1016/j.bcp.2016.11.006
  17. Langmead, B. and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359. https://doi.org/10.1038/nmeth.1923
  18. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  19. Loomba, R., Gindin, Y., Jiang, Z., Lawitz, E., Caldwell, S., Djedjos, C.S., Xu, R., Chung, C., Myers, R.P., Subramanian, G.M., et al. (2018). DNA methylation signatures reflect aging in patients with nonalcoholic steatohepatitis. JCI Insight 3, e96685. https://doi.org/10.1172/jci.insight.96685
  20. Lyu, Z., Ma, M., Xu, Y., Wang, X., Zhu, Y., Ren, W., and Li, T. (2020). Expression and prognostic significance of epithelial tissue-specific transcription factor ESE3 in hepatocellular carcinoma. Int. J. Clin. Oncol. 25, 1334-1345. https://doi.org/10.1007/s10147-020-01675-0
  21. Marcher, A.B., Bendixen, S.M., Terkelsen, M.K., Hohmann, S.S., Hansen, M.H., Larsen, B.D., Mandrup, S., Dimke, H., Detlefsen, S., and Ravnskjaer, K. (2019). Transcriptional regulation of Hepatic Stellate Cell activation in NASH. Sci. Rep. 9, 2324. https://doi.org/10.1038/s41598-019-39112-6
  22. McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495-501. https://doi.org/10.1038/nbt.1630
  23. Oh, S., Jo, Y., Jung, S., Yoon, S., and Yoo, K.H. (2020). From genome sequencing to the discovery of potential biomarkers in liver disease. BMB Rep. 53, 299-310. https://doi.org/10.5483/BMBRep.2020.53.6.074
  24. Riggi, N., Knoechel, B., Gillespie, S.M., Rheinbay, E., Boulay, G., Suva, M.L., Rossetti, N.E., Boonseng, W.E., Oksuz, O., Cook, E.B., et al. (2014). EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26, 668-681. https://doi.org/10.1016/j.ccell.2014.10.004
  25. Ross-Innes, C.S., Stark, R., Teschendorff, A.E., Holmes, K.A., Ali, H.R., Dunning, M.J., Brown, G.D., Gojis, O., Ellis, I.O., Green, A.R., et al. (2012). Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389-393. https://doi.org/10.1038/nature10730
  26. Sanyal, A.J., Van Natta, M.L., Clark, J., Neuschwander-Tetri, B.A., Diehl, A., Dasarathy, S., Loomba, R., Chalasani, N., Kowdley, K., Hameed, B., et al. (2021). Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559-1569. https://doi.org/10.1056/NEJMoa2029349
  27. Schuster, S., Cabrera, D., Arrese, M., and Feldstein, A.E. (2018). Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 15, 349-364. https://doi.org/10.1038/s41575-018-0009-6
  28. Seki, E., De Minicis, S., Osterreicher, C.H., Kluwe, J., Osawa, Y., Brenner, D.A., and Schwabe, R.F. (2007). TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med. 13, 1324-1332. https://doi.org/10.1038/nm1663
  29. Shia, W.J., Pattenden, S.G., and Workman, J.L. (2006). Histone H4 lysine 16 acetylation breaks the genome's silence. Genome Biol. 7, 217. https://doi.org/10.1186/gb-2006-7-5-217
  30. Sliz, E., Sebert, S., Wurtz, P., Kangas, A.J., Soininen, P., Lehtimaki, T., Kahonen, M., Viikari, J., Mannikko, M., Ala-Korpela, M., et al. (2018). NAFLD risk alleles in PNPLA3, TM6SF2, GCKR and LYPLAL1 show divergent metabolic effects. Hum. Mol. Genet. 27, 2214-2223. https://doi.org/10.1093/hmg/ddy124
  31. Yoo, T., Joo, S.K., Kim, H.J., Kim, H.Y., Sim, H., Lee, J., Kim, H.H., Jung, S., Lee, Y., Jamialahmadi, O., et al. (2021). Disease-specific eQTL screening reveals an anti-fibrotic effect of AGXT2 in non-alcoholic fatty liver disease. J. Hepatol. 75, 514-523. https://doi.org/10.1016/j.jhep.2021.04.011
  32. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137. https://doi.org/10.1186/gb-2008-9-9-r137