• Title/Summary/Keyword: Human blastocyst

Search Result 124, Processing Time 0.042 seconds

Effect of Partial Laser Assisted Hatching on Mouse Embryos (레이져를 이용한 부분적 보조부화술이 생쥐 수정란의 부화에 미치는 효과)

  • Kim, Dong-Hoon;Kim, Myo-Kynng;Lee, Hoi-Chang;Ko, Duck-Sung;Park, Won-Il;Kwon, Hynck-Chan;Lee, Ho-Joon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.2
    • /
    • pp.147-153
    • /
    • 2001
  • Objective: The present study was performed to investigate the efficiency of partial laser assisted hatching (p-LAH; lased 1/2 ZP width from ZP edge) on hatching of mouse blastocysts. Methods: We used non-contact $1.48{\mu}m$ diode laser (MTM, Switzland) to create a precise hole on zona pellucida. 2-cell embryos were collected from the mouse (ICR) oviduct at 48 hours after hCG administration. Collected 2-cell embryos were cultured in the P-1 medium supplemented with 0.4% BSA. For experiments, embryos at 8-cell stage were used after $20{\sim}22$ hours in culture. After conventional (c-LAH) or partial laser assisted hatching, the embryos were further cultured in P-1 medium supplemented with 0.4% BSA for 3 days. To compare efficiency of complete and partial laser assisted hatching, hatching rate, hatching time and blastocyst diameter and zona pellucida thickness at hatching time were investigated. Embryos were examined every 12 hours. Blastocyst diameter and zona pellucida thickness at hatching time were measured with an ocular micrometer. Results: Hatching rates of p-LAH group (84.2%) was significantly higher than that of control group (39.3%), but there was no difference between the p-LAH (84.2%) and c-LAH (91.2%). p-LAH group was hatched 12 hours earlier than control group, but hatched 12 hours later than c-LAH group. The diameter of blastocyst at hatching time of p-LAH group ($113.1{\pm}6.4{\mu}m$) was smaller than that of control group ($122.2{\pm}5.0{\mu}m$), but larger than that of c-LAH group ($102.2{\pm}2.7{\mu}m$). Zona pellucida thickness at hatching time of p-LAH group ($6.4{\pm}0.9{\mu}m$) was thicker than that of control group ($4.5{\pm}1.5{\mu}m$), but thinner than that of c-LAH group ($10.0{\pm}0.8{\mu}m$). Conclusion: These results suggest that p-LAH may maintains the cell arrangement of early embryos to ensure successful development and prevent precocious hatching of blastocyst when compare to c-LAH and conventional (acidic tyrode) AH. Thus, p-LAH may provide a valuable and effective AH technique for human ART program.

  • PDF

Effects of the Stepwise Exposure Treatments Before Freezing on the Survival Capacity of the Frozen-Thawed Mouse Mature Oocytes by Vitrification or Ultra-Rapid Freezing (동결 전 단계적 노출처리방법이 유리화동결 및 초급속동결-융해 후 생쥐 성숙난자의 생존력에 미치는 영향에 관한 연구)

  • Kim, Sang-Woo;Lee, Jae-Ik;Kim, Mi-Kyung;Lee, Young-Ah;Lee, Kyu-Sup;Yoon, Man-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.2
    • /
    • pp.191-200
    • /
    • 2000
  • Objective: This study was carried out to compare the effects of the stepwise exposure treatments on the morphological normality, fertilization and blastocyst formation rate of the frozen-thawed mouse mature oocytes by vitrification or ultra-rapid freezing and to use as a fundamental data for the cryopreservation of human oocytes. Materials and Methods: The morphological normality and fertilization rates of the vitrified and ultra-rapid frozen mouse mature oocytes after three-stepwise exposure treatments (1step, 3step and 5step) were observed. After choosing the 3step exposure treatment groups, we observed the morphological normality and fertilization, blastocyst formation rate of the vitrified and ultra-rapid frozen mouse mature oocytes. Results: The morphological normality and fertilization rates of the vitrified mouse mature oocytes after three-stepwise exposure treatments (1step, 3step and 5step) were 75%, 85%, 88% and 58%, 61 %, 54% respectively. There were no significant differences among treatments(p>0.05). The morphological normality and fertilization rate of the control was 92% and 65%. There were no significant differences in fertilization rate among control and treatments (p>0.05). The morphological normality and fertilization rates of the ultra-rapid frozen mouse mature oocytes after three-stepwise exposure treatments (1step, 3step and 5step) were 83%, 83%, 84% and 75%, 63%, 56% respectively. There were no significant differences among treatments (p>0.05). The morphological normality and fertilization rate of the control was 95% and 67%. There were no significant differences among control and treatments (p>0.05). The morphological normality and fertilization rate of the vitrified or ultra-rapid frozen mouse mature oocytes after 3step exposure treatment were 69% and 75%, respectively. The blastocyst formation rate was 60% and 57%. The results did not differ significantly between vitrification and ultra-rapid freezing (p>0.05). Conclusion: As known in the above results, there were no significant differences in the fertilization and blastocyst formation rate of the frozen-thawed mouse mature oocytes by vitrification or ultra-rapid freezing among the control and treatments. It is suggested that vitrification and ultra-rapid freezing method were effective for the cryopreservation of mouse mature oocytes.

  • PDF

Establishment of Human-Mouse Chimeric Animal by Injecting Human Embryonic Stem Cells into Mouse Blastocoele Cavity

  • 윤지연;이영재;김은영;이훈택;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.77-77
    • /
    • 2003
  • Chimeric animals are referred to as an organism composed of tissues derived from more than one species. In order to examine if a pluripotency of embryonic stem cells can cross the limitation of a species, we tried to establish human-mouse chimeric animals. Human embryonic stem cells were genetically modified to express eGFP using eukaryonic expression vector pcDNA 3.1 (In Vitrogene) for an easy identification. After selection with neomycin, approximately 15 cells were implanted into mouse blastocoele cavity. Ten chimeric blastocysts were transferred to one of the uterine horn of 2.5 days pesudopregnent ICR female. Out of 272 blastocysts transferred to pseudopregnant recipients 20 live newborn were obtained after 20 days. When newborn were obtained, pups were quickly removed immersed into 4% PFA. By histological examination using fluorescent microscope, green fluorescence was observed from the liver, heart, and spleen in newborn mice. Three weeks after born, presence of eGFP sequence within mouse genome (tail and kidney) was reconfirmed by PCR. eGFP sequence was amplified from the progenies of the animal suggesting a genetic transmission of the transgene. These chimeric mice having human cells at the beginning of development, are expected to recognize human cells as “self”, therefore, human cells or tissues will be able to escape the immunological surveillance of the host if grafted into the animal. These animals will serve as a good model system for studying the graft rejection in tissue transplantation and the potential of the cells to work well in many human disease.

  • PDF

Generation of Embryonic Stem Cell-derived Transgenic Mice by using Tetraploid Complementation

  • Park, Sun-Mi;Song, Sang-Jin;Choi, Ho-Jun;Uhm, Sang-Jun;Cho, Ssang-Goo;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.121-121
    • /
    • 2003
  • The standard protocol for the production of transgenic mouse from ES-injected embryo has to process via chimera producing and several times breeding steps, In contrast, tetraploid-ES cell complementation method allows the immediate generation of targeted murine mutants from genetically modified ES cell clones. The advantage of this advanced technique is a simple and efficient without chimeric intermediates. Recently, this method has been significantly improved through the discovery that ES cells derived from hybrid strains support the development of viable ES mice more efficiently than inbred ES cells do. Therefore, the objective of this study was to generate transgenic mice overexpressing human resistin gene by using tetrapioid-ES cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR and cloned into pCR 2.1 TOPO T-vector and constructed in pCMV-Tag4C vector. Human resistin mammalian expression plasmid was transfected into D3-GL ES cells by lipofectamine 2000, and then after 8~10 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec. (fusion rate : 93.5%) and cultured upto the blastocyst stage (development rate : 94.6%). The 15~20 previously G418-selected ES cells were injected into tetraploid blastocysts, and then transferred into the uterus of E2.5d pseudopregnant recipient mice. To investigate the gestation progress, two El9.5d fetus were recovered by Casarean section and one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, this finding demonstrates that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mouse for the rapid analysis of gene function in vivo.

  • PDF

Generation of Embryonic Stem Cell-derived Transgenic Mice by Using Tetraploid Complementation

  • Park, S.M.;Song, S.J.;Uhm, S.J.;Cho, S.G.;Park, S.P.;Lim, J.H.;Lee, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1641-1646
    • /
    • 2004
  • The objective of this study was to generate transgenic mice expressing human resistin gene by using the tetraploidembryonic stem (ES) cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR, cloned into $pCR^{(R)}$ 2.1 $TOPO^{(R)}$ vector and constructed in pCMV-Tag4C vector. Mammalian expression plasmid containing human resistin was transfected into D3-GL ES cells by Lipofectamine 2,000, and then after 10-12 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec (fusion rate: 2,114/2,256, 93.5%) and cultured up to the blastocyst stage (development rate: 1,862/2,114, 94.6%). The selected 15-20 ES cells were injected into tetraploid blastocysts, and then transferred into the uteri of E 2.5 d pseudopregnant recipient mice. To investigate the gestation progress, two E 19.5 mused fetuses were recovered by Cesarean section of which one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, our findings demonstrate that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mice for the rapid analysis of gene function in vivo.

Toxicity of the recombinant human hyaluronidase ALT-BC4 on embryonic development

  • Lee, Ji Hye;Yoo, Miyoun;Lee, Sang Mee;Park, Soon-Jae;Kil, Tae Young;Kim, Min Kyu
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.272-280
    • /
    • 2021
  • Cumulus-oocyte complexes (COCs), which contain immature oocytes, are matured in vitro for in vitro embryo production. Oocyte and cumulus cells are then separated using hyaluronidase. To date, there have only been a few reported cases of the toxic effects of hyaluronidase on porcine oocytes. The aim of this study was to compare the effects of bovine testis-derived hyaluronidase and recombinant human hyaluronidase on oocyte denudation and quality. Porcine COCs were matured for 44 h and denuded using different hyaluronidase concentrations and exposure times. Then, oocytes were activated by electrical parthenogenesis. In experiment 1, COCs were denuded using bovine-derived, ovine-derived (Hirax), and human recombinant (ALT-BC4) hyaluronidases for 10 and 20 min. In experiment 2, bovine-derived and human recombinant (ALT-BC4 and ICSI Cumulase®) hyaluronidases were used to denude the COCs for 2 and 20 min. In both experiments the oocytes were all completely denuded, and there was no degeneration. Rate of embryo development was significantly increased in group treated ALT-BC4 for 2 min and not significantly different in other treatment groups. In general it slightly decreased with longer exposure times. These results have confirmed that different sources of hyaluronidase do not have detrimental effects on the quality of porcine oocytes and suggest that the human recombinant hyaluronidase ALT-BC4 is suitable for oocyte denudation with an increased blastocyst rate.

A method using artificial neural networks to morphologically assess mouse blastocyst quality

  • Matos, Felipe Delestro;Rocha, Jose Celso;Nogueira, Marcelo Fabio Gouveia
    • Journal of Animal Science and Technology
    • /
    • v.56 no.4
    • /
    • pp.15.1-15.10
    • /
    • 2014
  • Background: Morphologically classifying embryos is important for numerous laboratory techniques, which range from basic methods to methods for assisted reproduction. However, the standard method currently used for classification is subjective and depends on an embryologist's prior training. Thus, our work was aimed at developing software to classify morphological quality for blastocysts based on digital images. Methods: The developed methodology is suitable for the assistance of the embryologist on the task of analyzing blastocysts. The software uses artificial neural network techniques as a machine learning technique. These networks analyze both visual variables extracted from an image and biological features for an embryo. Results: After the training process the final accuracy of the system using this method was 95%. To aid the end-users in operating this system, we developed a graphical user interface that can be used to produce a quality assessment based on a previously trained artificial neural network. Conclusions: This process has a high potential for applicability because it can be adapted to additional species with greater economic appeal (human beings and cattle). Based on an objective assessment (without personal bias from the embryologist) and with high reproducibility between samples or different clinics and laboratories, this method will facilitate such classification in the future as an alternative practice for assessing embryo morphologies.

The effects of different types of media on in vitro maturation outcomes of human germinal vesicle oocytes retrieved in intracytoplasmic sperm injection cycles

  • Fesahat, Farzaneh;Firouzabadi, Razieh Dehghani;Faramarzi, Azita;Khalili, Mohammad Ali
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • Objective: Optimizing in vitro maturation (IVM) media to achieve better outcomes has been a matter of interest in recent years. The aim of this prospective clinical trial was to investigate the effects of different media on the IVM outcomes of immature oocytes at the germinal vesicle (GV) stage. Methods: A total of 400 immature oocytes at the GV stage with normal morphology were retrieved from 320 infertile women aged $31{\pm}4.63years$ during stimulated intracytoplasmic sperm injection (ICSI) cycles. They were divided into groups of homemade IVM medium (I, n = 100), cleavage medium (II, n = 100), blastocyst medium (III, n = 100), and Sage IVM medium (IV, n = 100) and cultured for 24 to 48 hours at $37^{\circ}C$. ICSI was performed, and the rates of fertilization and embryo formation were compared across the four groups. Results: In the 400 retrieved GV oocytes, the total maturation rates showed significant differences in groups I to IV (55%, 53%, 78%, and 68%, respectively, p<0.001). However, there were no significant differences in the fertilization, embryo formation, or arrest rates of metaphase II oocytes across these groups. In all groups, GV maturation was mostly completed after 24 hours, with fewer oocytes requiring 48 hours to mature (p<0.01). Moreover, the rate of high-quality embryos was higher in group IV than in the other groups (p=0.01). Conclusion: The quality of the IVM medium was found to affect clinical IVM outcomes. Additionally, blastocyst medium may be a good choice in IVM/ICSI cycles as an alternative IVM medium.

Effects of Essential Fatty Acids during In Vitro Maturation of Porcine Oocytes: Hormone Synthesis and Embryonic Developmental Potential

  • Kim, Kang-Sig;Park, Hum-Dai
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.75-85
    • /
    • 2019
  • Omega-3 α-linolenic acid and omega-6 linoleic acid are essential fatty acids for health maintenance of human and animals because they are not synthesized in vivo. The purpose of this study was to evaluate the effect of α-linolenic acid and linoleic acid supplementation on in vitro maturation and developmental potential of porcine oocytes. Various concentrations of α-linolenic acid and linoleic acid were added into in vitro maturation medium, and we evaluated the degree of cumulus expansion, oocyte nuclear-maturation rate, blastocyst rate, blastocyst quality, and levels of prostaglandin E2, 17β-estradiol, and progesterone in the spent medium. High doses (100 μM) of α-linolenic acid and linoleic acid supplementation significantly inhibited cumulus expansion and oocyte nuclear maturation, and prostaglandin E2 synthesis also significantly decreased compared with other groups (p < 0.05). Supplementation of 50 μM α-linolenic acid and 10 μM linoleic acid showed higher quality blastocysts in terms of high cell numbers and low apoptosis when compared with other groups (p < 0.05), and synthesis ratio of 17β-estradiol / progesterone also significantly increased compared with control group (3.59 ± 0.22 vs. 2.97 ± 0.22, 3.4 ± 0.28 vs. 2.81 ± 0.19, respectively; p < 0.05). Our results indicated that supplementation with appropriate levels of α-linolenic acid and linoleic acid beneficially affects the change of hormone synthesis (in particular, an appropriate increase in the 17β-estradiol / progesterone synthesis ratio) for controlling oocyte maturation, leading to improved embryo quality. However, high doses of α-linolenic acid and linoleic acid treatment results in detrimental effects.

The effect of artificial shrinkage and assisted hatching on the development of mouse blastocysts and cell number after vitrification

  • Kim, Hye Jin;Lee, Ki Hwan;Park, Sung Baek;Choi, Young Bae;Yang, Jung Bo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.3
    • /
    • pp.94-100
    • /
    • 2015
  • Objective: The goal of this study was to ascertain optimal assisted hatching (AH) method in frozen embryo transfer. We compared the effect of depending on whether mechanical or laser-AH was performed before or after the vitrification of embryo development rate and blastocyst cell numbers. Methods: In order to induce superovulation, pregnant mare's serum gonadotropin followed by human chorionic gonadotropin were injected into 4- to 5-week-old female mice. 2-cell embryos were then collected by flushing out the oviducts. The Expanded blastocysts were recovered after the collected embryos were incubated for 48 hours, and were then subjected to artificial shrinkage (AS) and cross-mechanical AH (cMAH) or quarter-laser zona thinning-AH (qLZT-AH) were carried out using the expanded blastocysts before or after vitrification. After 48 hours of incubation, followed by vitrification and thawing (V-T), and blastocysts were fluorescence stained and observed. Results: The rate of formation of hatched blastocysts after 24 and 72 hours of incubation was significantly higher in the AS/qLZT-AH/V-T group than in the other groups (p<0.05). The cell number of the inner cell mass was higher in AS/V-T/non-AH and AS/V-T/cMAH groups than those of others (p<0.05). In the control group, the number of trophectoderm and the total cell number were higher than in the AS-AH group (p<0.05). Conclusion: The above results suggest that AS and AH in vitrification of expanded blastocysts lead to the more efficient formation of hatched blastocysts in mice.