References
- Tervit HR, Cooper MW, Goold PG, Haszard GM: Non-surgical embryo transfer in cattle. Theriogenology 1980, 13:63-71. https://doi.org/10.1016/0093-691X(80)90015-1
- Schneider HJ Jr, Castleberry RS, Griffin JL: Commercial aspects of bovine embryo transfer. Theriogenology 1980, 13:73-85. https://doi.org/10.1016/0093-691X(80)90016-3
- Lindner GM, Wright RW Jr: Bovine embryo morphology and evaluation. Theriogenology 1983, 20:407-416. https://doi.org/10.1016/0093-691X(83)90201-7
- Wright RW Jr, Ellington J: Morphological and physiological differences between in vivo- and in vitro-produced preimplantation embryos from livestock species. Theriogenology 1995, 44:1167-1189. https://doi.org/10.1016/0093-691X(95)00327-5
- Benyei B, Komlosi I, Pecsi A, Pollott G, Marcos CH: The effect of internal and external factors on bovine embryo transfer results in a tropical environment. Anim Reprod Sci 2006, 93:268-279. https://doi.org/10.1016/j.anireprosci.2005.07.012
- Farin PW, Britt JH, Shaw DW, Slenning BD: Agreement among evaluators of bovine embryos produced in vivo or in vitro. Theriogenology 1995, 44:339-349. https://doi.org/10.1016/0093-691X(95)00189-F
- Overstrom EW: In vitro assessment of embryo viability. Theriogenology 1996, 45:3-16. https://doi.org/10.1016/0093-691X(96)84625-5
- Hoshi H: In vitro production of bovine embryos and their application for embryo transfer. Theriogenology 2003, 59:675-685. https://doi.org/10.1016/S0093-691X(02)01247-5
- Lopez-Damian EP, Galina CS, Merchant H, Cedillo-Pelaez C, Aspron M: Assessment of Bos taurus embryos comparing stereoscopic microscopy and transmission electron microscopy. J Cell Animal Biol 2008, 2:072-078.
- Held E, Mertens EM, Mohammadi-Sangcheshmeh A, Salilew-Wondim D, Besenfelder U, Havlicek V, Herrler A, Tesfaye D, Schellander K, Holker M: Zona pellucida birefringence correlates with developmental capacity of bovine oocytes classified by maturational environment, COC morphology and G6PDH activity. Reprod. Fertil. 2011, 24:568-579.
- Guoqiang ZB, Patuwo E, Hu MY: Forecasting with artificial neural networks: The state of the art. Int J Forecast 1998, 14:35-62. https://doi.org/10.1016/S0169-2070(97)00044-7
- Goethals PLM, Dedecker AP, Gabriels W, Lek S, Pauw N: Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquat Ecol 2007, 41:491-508. https://doi.org/10.1007/s10452-007-9093-3
- Li EY: Artificial neural networks and their business applications. Inform Manag 1994, 27:303-313. https://doi.org/10.1016/0378-7206(94)90024-8
- Rocha JC, Matos FD, Frei F: Utilizacao de redes neurais artificiais para a determinacao do numero de refeicoes diarias de um restaurante universitario. Rev Nutr 2011, 24:735-742. https://doi.org/10.1590/S1415-52732011000500007
- Guresen E, Kayakutlu G, Daim TU: Using artificial neural network models in stock market index prediction. Expert Syst Appl 2011, 38:10389-10397. https://doi.org/10.1016/j.eswa.2011.02.068
- Haykin S: Neural Networks: A Comprehensive Foundation. 2nd edition. NJ, USA: Prentice Hall PTR, Upper Saddle River; 1998.
- Beale MH, Hagan MT, Demuth HB: Neural Network Toolbox User's Guide. [http://www.mathworks.com.au/help/pdf_doc/nnet/nnet_ug.pdf].
- Abramoff MD, Magalhaes PJ, Ram SJ: Image processing with image. J Biophotonics Intern 2004, 11:36-42.
- Yao X, Liu Y: Towards designing artificial neural networks by evolution. Appl Math Comput 1998, 91:83-90. https://doi.org/10.1016/S0096-3003(97)10005-4
- Moller MF: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 1993, 6:525-533. https://doi.org/10.1016/S0893-6080(05)80056-5
Cited by
- Methods for assessing the quality of mammalian embryos: How far we are from the gold standard? vol.20, pp.3, 2014, https://doi.org/10.5935/1518-0557.20160033
- Maternal selenium-supplementation at various stages of periconception period: influence on murine blastocyst morphology and implantation status vol.59, pp.4, 2014, https://doi.org/10.1186/s40781-017-0132-x
- Anti-Oxidative and Anti-Apoptotic Effects of Apigenin on Number of Viable and Apoptotic Blastomeres, Zona Pellucida Thickness and Hatching Rate of Mouse Embryos vol.12, pp.3, 2014, https://doi.org/10.22074/ijfs.2018.5392
- Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization vol.2, pp.1, 2019, https://doi.org/10.1038/s41746-019-0096-y
- Mining of variables from embryo morphokinetics, blastocyst’s morphology and patient parameters: an approach to predict the live birth in the assisted reproduction service vol.24, pp.4, 2014, https://doi.org/10.5935/1518-0557.20200014
- Artificial intelligence in human in vitro fertilization and embryology vol.114, pp.5, 2014, https://doi.org/10.1016/j.fertnstert.2020.09.157
- Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality vol.7, pp.2, 2014, https://doi.org/10.1016/j.heliyon.2021.e06298
- A machine learning system with reinforcement capacity for predicting the fate of an ART embryo vol.67, pp.1, 2014, https://doi.org/10.1080/19396368.2020.1822953
- Parameters to identify good quality oocytes and embryos in cattle vol.34, pp.2, 2014, https://doi.org/10.1071/rd21283