• Title/Summary/Keyword: Human SH-SY5Y cells

Search Result 96, Processing Time 0.029 seconds

Cytosolic prion protein induces apoptosis in human neuronal cell SH-SY5Y via mitochondrial disruption pathway

  • Wang, Xin;Dong, Chen-Fang;Shi, Qi;Shi, Song;Wang, Gui-Rong;Lei, Yan-Jun;Xu, Kun;An, Run;Chen, Jian-Ming;Jiang, Hui-Ying;Tian, Chan;Gao, Chen;Zhao, Yu-Jun;Han, Jun;Dong, Xiao-Ping
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.444-449
    • /
    • 2009
  • Different neurodegenerative disorders like prion disease, is caused by protein misfolding conformers. Reverse-transfected cytosolic prion protein (PrP) and PrP expressed in the cytosol have been shown to be neurotoxic. To investigate the possible mechanism of neurotoxicity due to accumulation of PrP in cytosol, a PrP mutant lacking the signal and GPI (CytoPrP) was introduced into the SH-SY5Y cell. MTT and trypan blue assays indicated that the viability of cells expressing CytoPrP was remarkably reduced after treatment of MG-132. Obvious apoptosis phenomena were detected in the cells accumulated with CytoPrP, including loss of mitochondrial transmembrane potential, increase of caspase-3 activity, more annexin V/PI-double positive-stained cells and reduced Bcl-2 level. Moreover, DNA fragmentation and TUNEL assays also revealed clear evidences of late apoptosis in the cells accumulated CytoPrP. These data suggest that the accumulation of CytoPrP in cytoplasm may trigger cell apoptosis, in which mitochondrial relative apoptosis pathway seems to play critical role.

The Inhibitory Effect of Baicalin on the Short-Term Food Intake in C57BL/6J Mice

  • Kim, Eun-Ho;Son, Rak-Ho;Myoung, Hyeon-Jong;Mar, Woong-Chon;Kim, Won-Ki;Nam, Kung-Woo
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • Appetite is inhibited by the anorexigenic neuropeptides POMC (proopiomelanocortin) and CART (cocaine-amphetamine-regulated transcript) in the hypothalamus. The present study was performed to examine the inhibitory effects of baicalin against food intake and the upregulation of POMC/CART. Short-term food intake (48 h) was significantly inhibited by treatment with baicalin (10 mg/kg, p<0.05) in C57BL/6 mice. Immunohistochemical analysis showed that baicalin upregulated POMC and CART levels in the arcuate nucleus of the hypothalamus. These effects were also examined using an in vitro system. pPOMC-Luc or pCART-Luc plasmids were transformed into mouse N29-2 neuronal and human SH-SY5Y cells, and the activities of baicalin were examined in these cells. Baicalin increased POMC and CART promoter-driven luciferase activity in a dose-dependent manner without cytotoxic effects. These results suggest that baicalin downregulates short-term food intake while upregulating POMC and CART expression.

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

Quantitative and Rapid Analysis of Transglutaminase Activity Using Protein Arrays in Mammalian Cells

  • Kwon, Mi-Hye;Jung, Jae-Wan;Jung, Se-Hui;Park, Jin-Young;Kim, Young-Myeong;Ha, Kwon-Soo
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.337-343
    • /
    • 2009
  • We developed a novel on-chip activity assay using protein arrays for quantitative and rapid analysis of transglutaminase activity in mammalian cells. Transglutaminases are a family of $Ca^{2+}$-dependent enzymes involved in cell regulation as well as human diseases such as neurodegenerative disorders, inflammatory diseases and tumor progression. We fabricated the protein arrays by immobilizing N,N'-dimethylcasein (a substrate) on the amine surface of the arrays. We initiated transamidating reaction on the protein arrays and determined the transglutaminase activity by analyzing the fluorescence intensity of biotinylated casein. The on-chip transglutaminase activity assay was proved to be much more sensitive than the $[^3H]putrescine$-incorporation assay. We successfully applied the on-chip assay to a rapid and quantitative analysis of the transglutaminase activity in all-trans retinoic acid-treated NIH 3T3 and SH-SY5Y cells. In addition, the on-chip transglutaminase activity assay was sufficiently sensitive to determine the transglutaminase activity in eleven mammalian cell lines. Thus, this novel on-chip transglutaminase activity assay was confirmed to be a sensitive and high-throughput approach to investigating the roles of transglutaminase in cellular signaling, and, moreover, it is likely to have a strong potential for monitoring human diseases.

Neuroprotective Effects of Methanol Extracts of Jeju Native Plants on Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Human Neuroblastoma Cells

  • Kong, Pil-Jae;Kim, Yu-Mi;Lee, Hee-Jae;Kim, Sung-Soo;Yoo, Eun-Sook;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.171-174
    • /
    • 2007
  • Neuronal death is a common characteristic hallmark of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases, whereas oriental medicinal plants have to possess valuable therapeutic potentials to treat neurodegenerative diseases. In the present study, in an attempt to provide neuroprotective agents from natural plants, 80% methanol extracts of a wide range of medicinal plants, which are native to Jeju Island in Korea, were prepared and their protective effects on hydrogen peroxide-induced apoptotic cell death were examined. Among those tested, extracts from Smilax china and Saururus chinesis significantly decreased hydrogen peroxide-induced apoptotic cell death. The extracts attenuated hydrogen peroxide($H_2O_2$)-induced caspase-3 activation in a dose-dependent manner. Further, plant extracts restored $H_2O_2$-induced depletion of intracellular glutathione, a major endogenous antioxidant. The data suggest that Jeju native medicinal plants could potentially be used as therapeutic agents for treating or preventing neurodegenerative diseases in which oxidative stress is implicated.

Baicalein Protects 6-OHDA-induced Neuronal Damage by Suppressing Oxidative Stress

  • Im, Heh-In;Nam, Eun-Joo;Lee, Eun-Sun;Hwang, Yu-Jin;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.309-315
    • /
    • 2006
  • The protective effects of baicalein, one of the flavonoids in Scutellaria baicalensis Georgi, were evaluated against 6-hydroxydopamine (6-OHDA)-induced neuronal damage in mice and cultured human neuroblastoma cells. Nigrostriatal damage was induced by stereotaxically injecting 6-OHDA into the right striatum. Baicalein was administered intraperitoneally 30 min before and 90 min after lesion induction. Animals received a further daily injection of baicalein for 3 consecutive days. Two weeks after 6-OHDA injection, contralateral rotational asymmetry was observed by apomorphine challenge in lesioned mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed a significant loss of terminals in lesioned striatum and the reduction of the numbers of TH-positive cell in the ipsilateral substantia nigra (SN). In addition, the levels of dopamine (DA) and DA metabolites were reduced and lipid peroxidation was increased in lesioned striatum. However, baicalein treatment reduced apomorphine-induced rotational behavior in 6-OHDA-lesioned mice, and increased TH immunoreactivity in the striatum and SN, and DA levels in lesioned striatum. Lipid peroxidation induced by 6-OHDA was also inhibited by baicalein treatment. Furthermore, when SH-SY5Y human neuroblastoma cells were treated with baicalein, 6-OHDA-induced cytotoxicity and reactive oxygen species (ROS) production were significantly reduced. These results indicate that baicalein effectively protects 6-OHDA-induced neuronal damage through antioxidant action.

PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression

  • Kim, Duk-Soo;Sohn, Eun-Jeong;Kim, Dae-Won;Kim, Young-Nam;Eom, Seon-Ae;Yoon, Ga-Hyeon;Cho, Sung-Woo;Lee, Sang-Hyun;Hwang, Hyun-Sook;Cho, Yoon-Shin;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.532-537
    • /
    • 2012
  • P18, a member of the INK4 family of cyclin-dependent kinase inhibitors, is a tumor suppressor protein and plays a key cell survival role in a variety of human cancers. Under pathophysiological conditions, the INK4 group proteins participate in novel biological functions associated with neuronal diseases and oxidative stress. Parkinson's disease (PD) is characterized by loss of dopaminergic neurons, and oxidative stress is important in its pathogenesis. Therefore, we examined the effects of PEP-1-p18 on oxidative stress-induced SH-SY5Y cells and in a PD mouse model. The transduced PEP-1-p18 markedly inhibited 1-methyl-4-phenyl pyridinium-induced SH-SY5Y cell death by inhibiting Bax expression levels and DNA fragmentation. Additionally, PEP-1-p18 prevented dopaminergic neuronal cell death in the substantia nigra of a 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine-induced PD mouse model. These results indicate that PEP-1-p18 may be a useful therapeutic agent against various diseases and is a potential tool for treating PD.

Neuroprotective Effect of Insamyangyung-tang (인삼양영탕(人蔘養營湯)의 산화적 stress에 대한 뇌세포 보호효과)

  • Kim, Seung-Hyun;Lee, Chang-Hoon;Lee, Jin-Moo;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Purpose: Oxidative stress was thought to play a critical role in neurodegenerative disease. Many in vivo and in vitro reports explained the possible pathway of human aging. But in therapeutic aspects, there was no clear answers to prevent aging associated with neural diseases. In this study, we investigated the antioxidant and neuroprotective effects of the Insamyangyung-tang (IYT). Methods: To estimate the antioxidant effects, we carried out 1.1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, 2,2'-azinobis-(3- ethylbenzothiazoline-6- sulfonic acid (ABTS) radical cation decolorization assay, and measurement of total polyphenolic content. To evaluate neuroprotective effect of IYT in vitro. We performed thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) creation in SH-SY5Y. Tyrosine hydroxylase (TH) immunocytochemistry, nitric oxide (NO) assay, and TNF-${\alpha}$ assay in primary rat mesencephalic dopaminergic neurons. Results: The $IC_{50}$ values were $571.6{\mu}g/m{\ell}$ and $202.3{\mu}g/m{\ell}$ in DPPH and ABTS assay respectively. Total polyphenolic content was 1.05%. In SH-SY5Y culture, IYT significantly increased the decreased cell viability by 6-OHDA at the concentrations of $10{\mu}g/m{\ell}$ in pre-treatment group, $10-100{\mu}g/m{\ell}$ in post-treatment group, and $100{\mu}g/m{\ell}$ in co-treatment group. The production of ROS induced by 6-OHDA was significantly inhibited in IYT treated group. In mesencephalic dopaminergic cell culture, the IYT group reduced the dopaminergic cell loss against 6-OHDA toxicity and the production of No and TNF-${\alpha}$ at the concentration of $0.2{\mu}g/m{\ell}$. Conclusion: These results showed that IYT has antioxidant and neuroprotectctive effects in the dopaminergic cells through decreasing the production of ROS, NO and TNF-${\alpha}$ which can cause many neurodegenerative changes in brain cell.

Anti-apoptotic effect of fermented Citrus sunki peel extract on chemical hypoxia-induced neuronal injury (화학적 저산소증이 유도하는 뇌신경세포 손상에 있어서 미성숙 진귤 과피 발효 추출물의 보호 효과)

  • Ko, Woon Chul;Lee, Sun Ryung
    • Journal of Nutrition and Health
    • /
    • v.48 no.5
    • /
    • pp.451-456
    • /
    • 2015
  • Purpose: Neuronal apoptotic events induced by aging and hypoxic/ischemic conditions is an important risk factor in neurodegenerative diseases such as ischemia stroke and Alzheimer's disease. The peel of Citrus sunki Hort. ex Tanaka has long been used as a traditional medicine, based on multiple biological activities including anti-oxidant, anti-inflammation, and anti-obesity. In the current study, we examined the actions of fermented C. sunki peel extract against cobalt chloride ($CoCl_2$)-mediated hypoxic death in human neuroblastoma SH-SY5Y cells. Methods: Cell viability was measured by trypan blue exclusion. Expression of apoptosis related proteins and release of cytochrome c were detected by western blot. Production of intracellular reactive oxygen species (ROS) and apoptotic morphology were examined using 2',7'-dichlorofluorescin diacetate (DCF-DA) and 4',6-diamidino-2-phenylindole (DAPI) staining. Results: Exposure to $CoCl_2$, a well-known mimetic agent of hypoxic/ischemic condition, resulted in neuronal cell death via caspase-3 dependent pathway. Extract of fermented C. sunki peel significantly rescued the $CoCl_2$-induced neuronal toxicity with the cell viability and appearance of apoptotic morphology. Cytoprotection with fermented C. sunki peel extract was associated with a decrease in activities of caspase-3 and cleavage of poly (ADP ribose) polymerase (PARP). In addition, increase in the intracellular ROS and release of cytochrome c from mitochondria to the cytosol were inhibited by treatment with extract of fermented C. sunki peel. Conclusion: Based on these data, fermented C. sunki peel extract might have a protective effect against $CoCl_2$-induced neuronal injury partly through generation of ROS and effectors involved in mitochondrial mediated apoptosis.

Neuroprotective and Anti-inflammatory Effects of Phenolic Compounds in Panax ginseng C.A. Meyer (인삼에 함유된 페놀성 선분의 신경세포보호 및 항염증 효과)

  • Kong, Yeon-Hee;Lee, Young-Chul;Choi, Sang-Yoon
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.111-114
    • /
    • 2009
  • The six phenolic-compound (ascorbic acid, maltol, esculetin,p-coumaric acid, cinnamic acid, and quercetin) contents of Panax ginseng c.A. Meyer were determined in this study. The results showed that the ascorbic acid, cinnamic acid, and esculetin contents of Panax ginseng C.A. Meyer are higher than those of the other ingredients. Among these compounds, ascorbic acid and cinnamic acid significantly inhibited LPS-induced nitric oxide production in the RAW 264.7 cells. Cinnamic acid also effectively inhibited the oxidative damages in the human neuroblastoma SH-SY5Y cells. Although this study examined the neuroprotective and anti-inflammatory activities using only one kind of cells, its results suggest that cinnarnic acid potently contributes to the neuroprotective and anti-inflammatory properties of Panax ginseng C.A. Meyer.