DOI QR코드

DOI QR Code

The Inhibitory Effect of Baicalin on the Short-Term Food Intake in C57BL/6J Mice

  • Received : 2010.02.18
  • Accepted : 2010.03.22
  • Published : 2010.04.30

Abstract

Appetite is inhibited by the anorexigenic neuropeptides POMC (proopiomelanocortin) and CART (cocaine-amphetamine-regulated transcript) in the hypothalamus. The present study was performed to examine the inhibitory effects of baicalin against food intake and the upregulation of POMC/CART. Short-term food intake (48 h) was significantly inhibited by treatment with baicalin (10 mg/kg, p<0.05) in C57BL/6 mice. Immunohistochemical analysis showed that baicalin upregulated POMC and CART levels in the arcuate nucleus of the hypothalamus. These effects were also examined using an in vitro system. pPOMC-Luc or pCART-Luc plasmids were transformed into mouse N29-2 neuronal and human SH-SY5Y cells, and the activities of baicalin were examined in these cells. Baicalin increased POMC and CART promoter-driven luciferase activity in a dose-dependent manner without cytotoxic effects. These results suggest that baicalin downregulates short-term food intake while upregulating POMC and CART expression.

Keywords

References

  1. Broberger, C., De Lecea, L., Sutcliffe, J. G. and Hokfelt, T. (1998). Hypocretin/ orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol. 402, 460-474. https://doi.org/10.1002/(SICI)1096-9861(19981228)402:4<460::AID-CNE3>3.0.CO;2-S
  2. Catania, A. (2008). Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci. 31, 353-360. https://doi.org/10.1016/j.tins.2008.04.002
  3. Chai, B., Li, J. Y., Zhang, W., Ammori, J. B. and Mulholland, M. W. (2007). Melanocortin-3 receptor activates MAP kinase via PI3 kinase. Regul. Pept. 139, 115-121. https://doi.org/10.1016/j.regpep.2006.11.003
  4. Chan, F. L., Choi, Z. Y. and Huang, Y. (2000). Induction of apoptosis in prostate cancer cell lines by a flavonoid, baicalin. Cancer Lett. 160, 218-219.
  5. Coll, A. P. and Loraine-Tung, Y. C. (2009). Pro-opiomelanocortin (POMC)-derived peptides and the regulation of energy homeostasis. Mol. Cell Endocrinol. 300, 147-151. https://doi.org/10.1016/j.mce.2008.09.007
  6. Cone, R. D. (2000). The melanocortin-4 receptor. In The Melanocortin Receptors (R. D. Cone, Ed), pp. 405-447. Humana Press, New Jersey.
  7. Eberle, A. N. (2000). Proopiomelanocortin and the melanocortin peptides. In The Melanocortin Receptors (R. D. Cone, Ed), pp. 3-67. Humana Press, New Jersey.
  8. Elias, C. F., Saper, C. B., Maratos-Flier, E., Tritos, N. A., Lee, C. and Kelly, J. (1998). Chemically defined projections linking the medio basal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402, 442-459. https://doi.org/10.1002/(SICI)1096-9861(19981228)402:4<442::AID-CNE2>3.0.CO;2-R
  9. Emmerson, P. J., Fisher, M. J., Yan, L. Z. and Mayer, J. P. (2007). Melanocortin-4 receptor agonists for the treatment of obesity. Curr. Top. Med. Chem. 7, 1121-1130. https://doi.org/10.2174/156802607780906636
  10. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. and Cone, R. D. (1997). Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165-168. https://doi.org/10.1038/385165a0
  11. Fu, L. Y. and van den Pol, A. N. (2008). Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons. J. Neurosci. 28, 5433-5449. https://doi.org/10.1523/JNEUROSCI.0749-08.2008
  12. Gantz, I. and Fong, T. M. (2003). The melanocortin system. Am. J. Physiol. Endocrinol. Metab. 284, 468-474. https://doi.org/10.1152/ajpendo.00434.2002
  13. Gao, Z., Huang, K., Yang, X. and Xu, H. (1999). Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim. Biophys. Acta. 1472, 643-650. https://doi.org/10.1016/S0304-4165(99)00152-X
  14. Higuchi, H., Yamaguchi, T. and Niki, T. (2006). Regulation of hypothalamic neuropeptide expression and feeding behavior in NPY-Y5 knockout (KO) mice. Nippon Yakurigaku Zasshi 127, 92-96. https://doi.org/10.1254/fpj.127.92
  15. Huang, H., Yang, A., Li, D., Fu, L., Yu, N. and Su, W. (2009). Baicalin suppresses expression of Chlamydia protease-like activity factor in Hep-2 cells infected by Chlamydia trachomatis. Fitoterapia 80, 448-452. https://doi.org/10.1016/j.fitote.2009.06.004
  16. Irani, B. G. and Haskell-Luevano, C. (2005). Feeding effects of melanocortin ligands a historical perspective. Peptides 26, 1788-1799. https://doi.org/10.1016/j.peptides.2004.11.038
  17. Kalra, S. P. and Kalra, P. S. (2003). Neuropeptide Y: a physiological orexigen modulated by the feedback action of ghrelin and leptin. Endocrine 22, 49-56. https://doi.org/10.1385/ENDO:22:1:49
  18. Koylu, E. O., Couecyro, P. R., Lambert, P. D. and Kuhar, M. J. (1998). Cocaine- and amphetamine-regulated transcript immunohistochemical localization in the rat brain. J. Comp. Neurol. 391, 115-132. https://doi.org/10.1002/(SICI)1096-9861(19980202)391:1<115::AID-CNE10>3.0.CO;2-X
  19. Li, B. Q., Fu, T., Dongyan, Y., Mikovits, J. A., Ruscetti, F. W. and Wang, J. M. (2000). Flavonoid baicalin inhibits HIV-1 infection at the level of viralentry. Biochem. Biophys. Res. Commun. 276, 534-538. https://doi.org/10.1006/bbrc.2000.3485
  20. Li-Weber, M. (2009). New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev. 35, 57-68. https://doi.org/10.1016/j.ctrv.2008.09.005
  21. Lin, L. L., Li, K. G., Hui, W., Ying, X., Xiong, F. W., Zhang, Y. H., Xue, X., Qi, X. M. and Ren, J. (2008). Baicalin inhibits macrophage activation by lipopolysaccharide and protects mice from endotoxin shock. Biochem. Pharmacol. 75, 914-922. https://doi.org/10.1016/j.bcp.2007.10.009
  22. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. and Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature 443, 289-295. https://doi.org/10.1038/nature05026
  23. Murphy, K. G. and Bloom, S. R. (2006). Gut hormones and the regulation of energy homeostasis. Nature 444, 854-859. https://doi.org/10.1038/nature05484
  24. Ollmann, M. M., Wilson, B. D., Yang, Y. K., Kerns, J. A., Chen, Y., Gantz, I. and Barsh, G. S. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135-138. https://doi.org/10.1126/science.278.5335.135
  25. O'Rahilly, S. and Yeo, G. S. (2004). Farooqi IS. Melanocortin receptors weigh in. Nat. Med. 10, 351-352. https://doi.org/10.1038/nm0404-351
  26. Schwartz, M. W., Woods, S. C., Porte, D. Jr., Seeley, R. J. and Baskin, D. G. (2000). Central nervous system control of food intake. Nature 404, 661-671. https://doi.org/10.1038/35007534
  27. Sujuan, W., Ailing, S. and Renmin, L. (2005). Separation and purification of baicalin and wogonoside from the Chinese medicinal plant Scutellaria baicalensis Georgi by high-speed counter-current chromatography. J. Chromatogr. A. 1066, 243-247. https://doi.org/10.1016/j.chroma.2005.01.054
  28. Vicentic, A. and Jones, D. C. (2007). The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J. Pharmacol. Exp. Ther. 320, 499-506.
  29. Wang, N., Tang, L. J., Zhu, G. Q., Peng, D. Y., Wang, L., Sun, F. N. and Li, Q. L. (2008). Apoptosis induced by baicalin involving up-regulation of P53 and bax in MCF-7 cells. J. Asian Nat. Prod. Res. 10, 1129-1135. https://doi.org/10.1080/10286020802410664
  30. Wang, Q., Wang, Y. T., Pu, S. P. and Zheng, Y. T. (2004). Zinc coupling potentiates anti-HIV-1 activity of baicalin. Biochem. Biophys. Res. Commun. 324, 605-610. https://doi.org/10.1016/j.bbrc.2004.09.093

Cited by

  1. Methanol extract of Hopea odorata suppresses inflammatory responses via the direct inhibition of multiple kinases vol.145, pp.2, 2013, https://doi.org/10.1016/j.jep.2012.11.041
  2. AP-1 pathway-targeted inhibition of inflammatory responses in LPS-treated macrophages and EtOH/HCl-treated stomach by Archidendron clypearia methanol extract vol.146, pp.2, 2013, https://doi.org/10.1016/j.jep.2013.01.034
  3. Methanol extract of Evodia lepta displays Syk/Src-targeted anti-inflammatory activity vol.148, pp.3, 2013, https://doi.org/10.1016/j.jep.2013.05.030
  4. Methanol extract of Osbeckia stellata suppresses lipopolysaccharide- and HCl/ethanol-induced inflammatory responses by inhibiting Src/Syk and IRAK1 vol.143, pp.3, 2012, https://doi.org/10.1016/j.jep.2012.08.015
  5. Src and Syk are targeted to an anti-inflammatory ethanol extract of Aralia continentalis vol.143, pp.2, 2012, https://doi.org/10.1016/j.jep.2012.07.031
  6. ERK1- and TBK1-targeted anti-inflammatory activity of an ethanol extract of Dryopteris crassirhizoma vol.145, pp.2, 2013, https://doi.org/10.1016/j.jep.2012.11.019
  7. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract 2017, https://doi.org/10.1016/j.jgr.2017.06.003
  8. Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells vol.35, pp.2, 2011, https://doi.org/10.5142/jgr.2011.35.2.200
  9. Src/NF-κB-targeted inhibition of LPS-induced macrophage activation and dextran sodium sulphate-induced colitis by Archidendron clypearia methanol extract vol.142, pp.1, 2012, https://doi.org/10.1016/j.jep.2012.04.026
  10. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract vol.154, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.04.008
  11. Anti-inflammatory activity of Sorbus commixta water extract and its molecular inhibitory mechanism vol.134, pp.2, 2011, https://doi.org/10.1016/j.jep.2010.12.032