• 제목/요약/키워드: Human Response to Vibration

검색결과 101건 처리시간 0.026초

Wobbling Mass를 고려한 인체 진동 모텔의 개발 (Development of Human Body Vibration Model Including Wobbling Mass)

  • 김영은;백광현;최준희
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.193-200
    • /
    • 2002
  • Simple spring-damper-mass models have been widely used to investigate whole-body vortical biodynamic response characteristics of the seated vehicle driver. Most previous models have not considered the effect of wobbling masses; i.e. heart, lungs, liver, intestine, etc. In this study, 4 -DOF seated driver model including one non-rigid mass representing wobbling visceral mass, 5-DOF model including intestine, and 10-DOF model including five lumbar vertebral masses were proposed. The model parameters were identified by a combinatorial optimization technique. simulated annealing method. The objective function was chosen as the sum of error between model response of seat-to-head transmissibility and driving point mechanical impedance and those of experimental data for subjects seated erect without backrest support. The model response showed a good agreement with the experimental response characteristics. Using a 10-DOF model, calculated resonance frequency of lumbar spine at 4Hz was matched well with experimental results of Panjabi et al.

차량산업에서의 인체진동

  • 장한기
    • 소음진동
    • /
    • 제12권2호
    • /
    • pp.113-119
    • /
    • 2002
  • ‘인체진동(human vibration)’은 진동에 대한 인체의 반응(human response to vibration)의 줄임말로써, 환경으로서의 진동 및 충격이 인체에 미치는 물리적, 심리적 영향을 측정, 평가하는 것을 주요 연구대상으로 한다. 인체진동 분야의 주요 연구개발은 객관적인 물리량의 산출뿐만 아니라 주관적인 느낌을 수치화하는 작업을 포함하기 때문에 기계진동, 생체역학(biodynamics)과 기본적인 역학과 심리측정학(psychometrics), 심리물리학(psychophysics), 인간공학(ergonomics) 등과 같이 다양한 종류의 학문이 요구된다.(중략)

쇼크타입 수직방향 전신진동에 대한 생체동역학적 반응의 비선형성 (Nonlinearity of Biodynamic Response to Shock-Type Vertical Whole-Body Vibration)

  • 안세진;;유완석;정의봉
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.145-151
    • /
    • 2007
  • Impulsive excitation on vehicle produces shock-type vibration on the seat, which has major frequencies and damping ratios dependent on the characteristics of the suspension, the tire, the seat cushion and so on. The response of single degree of freedom model to a half-sine force input was considered as simple shock-type vibration signal. Quasi-apparent-mass for fifteen subjects was measured with the shock-type vibration generated on a rigid seat mounted on the simulator, so its nonlinearity was apparently found over 6.3 Hz according to the difference of magnitude of the shock.

조종 숙련도 변화에 따른 심리적 리스크 이미지의 변화에 대한 평가 (Assesment on the Transformation of Psychological Risk Images due to Development of Flight Skills)

  • 김영관;임현교
    • 대한인간공학회지
    • /
    • 제22권1호
    • /
    • pp.57-67
    • /
    • 2003
  • The resonance behaviour needs be understood to identify the mechanisms responsible for the dynamic characteristics of human body, to allow for the non-linearity when predicting the influence of seating dynamics. and to predict the adverse effects caused by various magnitudes of vibration. However, there are currently no known studies on the effect of vibration magnitude on the transmissibility to thoracic or lumbar spine of the seated person. despite low back pain(LBP) being the most common ailment associated with whole-body vibration. The objective of this paper is to develop a proper mathematical human model for LBP and musculoskeletal injury of the crew in a maritime vehicle. In this study, 7 degree-of-freedom including 2 non-rigid mass representing wobbling visceral and intestine mass, is proposed. Also. when compared with previously published experimental results, the model response was found to be well-matching. When exposed to various of vertical vibration, the human model shows appreciable non-linearity in its biodynamic responses. The relationships of resonance for LBP and musculoskeletal injury during whole-body vibration are also explained.

Rotational inertial double tuned mass damper for human-induced floor vibration control

  • Wang, Pengcheng;Chen, Jun;Han, Ziping
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.283-294
    • /
    • 2022
  • An inerter is a passive mechanical element whose inertance can be thousands of times its own physical mass. This paper discusses the application of an inerter-based passive control system, termed rotational inertial double-tuned mass damper (RIDTMD), to mitigate human-induced floor vibrations. First, the acceleration frequency response function of the floor with an RIDTMD is first derived. It is then employed to determine the optimal design parameters of the RIDTMD using the extended fixed-points technique. Based on a theoretical analysis, design-oriented empirical functions are proposed for the RIDTMD optimal parameters, whose performance for floor vibration control is evaluated by numerical examples, in which three typical human-induced load types are considered: walking, jumping, and bouncing. The results indicate that the applicability and effectiveness of the RIDTMD for human-induced floor vibration control are robust for various load types, load frequencies, and floor natural frequencies. For the same mass ratio, the RIDTMD is better than the TMD in reducing the floor vibration amplitude and improving the effective frequency suppression bandwidth, and for the same vibration suppression effect, the mass of the RIDTMD is much lighter than that of the TMD.

한국인 앉은 자세에 대한 수직 진동 -응답특성의 실험적 연구 : (II) Mechanical Impedances (Experimental Investigation of the Response Characteristics of Korean -seated Subjects under Vertical Vibration: (II) Mechanical Impedances)

  • 정완섭;김영태;권휴상;홍동표
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.713-719
    • /
    • 2003
  • This paper introduces attempts to obtain the ‘representative’ characteristics of the mechanical impedance of seated Korean subjects under vertical vibration. Individual responses of driving-point mechanical impedance obtained from forty one Korean subjects are illustrated. Four kinds of vibration levels and three different sitting postures are selected to collect the responses of each subject. Those individual responses are used to estimate the ‘mean’ mechanical impedance, which may be expected to be a representative model to Korean subjects. Several interesting features of the estimated mechanical impedance are suggested and compared to those of ISO/DIS 5982.

Simulated Annealing 기법을 이용한 인체 수직 전신 진동 모델의 파라미터 선정 (Mathematical Model Development of Whole-body Vertical Vibration, Using a Simulated Annealing Method)

  • 최준희;김영은;백광현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.381-386
    • /
    • 2000
  • Simple spring-damper-mass models have been widely used to understand whole-body vertical biodynamic response characteristics of the seated vehicle driver. However, most previous models have not considered about the non-rigid masses(wobbling masses). A simple mechanical model of seated human body developed in this study included the torso represented by a rigid and a wobbling mass. Within the 0.5-20Hz frequency range and for excitation amplitudes maintained below $5ms^{-2}$, this 4-degree-of-freedom driver model is proposed to satisfy the measured vertical vibration response characteristics defined from a synthesis of published data for subjects seated erect without backrest support. The parameters are identified by using the combinatorial optimization technique, simulated annealing method. The model response was found to be provided a closer agreement with the response characteristics than previously published models.

  • PDF

Human Postural Dynamics in Response to the Horizontal Vibration

  • Shin Young-Kyun;Fard Mohammad A.;Inooka Hikaru;Kim Il-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.325-332
    • /
    • 2006
  • The dynamic responses of human standing postural control were investigated when subjects were exposed to long-term horizontal vibration. It was hypothesized that the motion of standing posture complexity mainly occurs in the mid-sagittal plane. The motor-driven support platform was designed as a source of vibration. The AC Servo-controlled motors produced anterior/posterior (AP) motion. The platform acceleration and the trunk angular velocity were used as the input and the output of the system, respectively. A method was proposed to identify the complexity of the standing posture dynamics. That is, during AP platform motion, the subject's knee, hip and neck were tightly constrained by fixing assembly, so the lower extremity, trunk and head of the subject's body were individually immovable. Through this method, it was assumed that the ankle joint rotation mainly contributed to maintaining their body balance. Four subjects took part in this study. During the experiment, the random vibration was generated at a magnitude of $0.44m/s^2$, and the duration of each trial was 40 seconds. Measured data were estimated by the coherence function and the frequency response function for analyzing the dynamic behavior of standing control over a frequency range from 0.2 to 3 Hz. Significant coherence values were found above 0.5 Hz. The estimation of frequency response function revealed the dominant resonance frequencies between 0.60 Hz and 0.68 Hz. On the basis of our results illustrated here, the linear model of standing postural control was further concluded.

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.