• 제목/요약/키워드: Human Osteoblast

검색결과 175건 처리시간 0.026초

Lipopolysaccharide and Prostaglandin $E_2$ regulates the gene expression of IL-1$\beta$ in mouse osteoblast cells

  • Noh, Sang-Ho;Park, Young-Gukk;Kim, Cheorl-Ho
    • 생명과학회지
    • /
    • 제10권5호
    • /
    • pp.529-532
    • /
    • 2000
  • Prostaglandin $E_2$(PG$E_2$) is an abundant eicosanoid in bone that has been implicated in a number of pathological states associated with bone loss, and is also known to stimulate matric metalloproteinase-1 systhesis and secretion in rat and human osteoblast cells, although the intracellular reaction remain unclear. Interleukin-1$\beta$ (IL-1$\beta$) is a cytokine that plays a critical role in bone remodelling and appears to act as a downstream effector of most bone-resorbing agents. However, it is still interesting to examine whether PG$E_2$ regulates IL-1$\beta$ expression by mouse osteoblasts or not. Here we demonstrate that PG$E_2$is a potent inducer of IL-1$\beta$ production by fetal osteoblasts.

  • PDF

Adhesion of Human Osteoblasts Cell on CrN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong-Hung;Kim, Sun-Kyu
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.203-207
    • /
    • 2009
  • Interaction between human osteoblast (hFOB 1.19) and CrN films was conducted in vitro. CrN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). CrN films, glass substrates and TiN films were cultured with human osteoblasts for 48 and 72 hours. Actin stress fiber patterns and cell adhesion of osteoblasts were found less organized and weak on CrN films compared to those on the glass substrates and the TiN films. Human osteoblasts also showed less proliferation and less distributed microtubule on CrN films compared to those on glass substrates and TiN films. Focal contact adhesion was not observed in the cells cultured on CrN films, whereas focal contact adhesion was observed well in the cells cultured on glass substrates and TiN films. As a result, the CrN film is a potential candidate as a surface coating to be used for implantable devices which requires minimal cellular adhesion.

Adhesion of Human Osteoblasts Cell on TiN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong Hung;Kim, Sun-Kyu;Le, Vinh Van;Kwon, Byoung-Se
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.264-268
    • /
    • 2008
  • Interaction between human osteoblast and TiN films was conducted in vitro. TiN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). TiN films, glass substrates and Ti films were cultured with human osteoblasts for 48 and 72 h hours. Actin stress fiber patterns and microtubules of osteoblasts were found slightly more organized and distributed on TiN films compared to those on the Ti films and the glass substrates. Human osteoblasts also showed slightly higher cell attachment, proliferation, and focal contact adhesion on TiN films compared to those on Ti films and glass substrates. Our results demonstrated that TiN films showed slightly better cellular adhesion of osteoblasts than Ti films and glass substrates in a short-time culture period.

폴리카프로락톤 실리카 나노 복합체를 이용한 골이식대체재 개발에 관한 연구 (Study on the development of polycaprolacton silica nanohybrid for bone substitutes)

  • 정근식;임성빈;정진형;홍기석;김종여
    • Journal of Periodontal and Implant Science
    • /
    • 제34권2호
    • /
    • pp.425-448
    • /
    • 2004
  • A bioactive and degradable poly(epsilon -caprolactone)/silica nanohybrid(PSH) was synthesized for the application as a bone substitute. PSH was manufactured by using silica and polycaprolacton. PSH was manufactured in some composition after low crystaline apatite had been formed in simulated body fluid and, was used this study. The safety of the PSH was established by test of acute, and subacute toxicity, sensitization cytotoxicity and sterility. In order to assess activity of osteoblast, the test for attaching osteoblast, proliferation test for osteoblast, differentiating gene expression test are performed in vitro. And bone substitutes were grafted in rabbit's calvarium, during 8 weeks for testing efficacy of bone substitutes. Degree of osteogenesis and absorption of substitutes were evaluated in microscopic level. In result, it was not appeared that acute and subacute toxicity, sensitization in intradermal induction phase, topical induction phase and challenge phase. It was shown that the test can not inhibit cell proliferation. adversely, it had some ability to accelerate cell proliferation. The result of sterility test described bacterial growth was not detected in most test tube. The attaching and proliferation test of osteoblast had good results. In the result of differentiating gene expression test for osteoblast, cbfa1 and, alkaline phosphatase, osteocalcin and GAPDH were detected with mRNA analysis. In the PSH bone formation test, ostgeoblastic activity would be different as material constitution but it had good new bone formation ability except group #218. futhermore, some material had been absorbed within 8 weeks. Above studies, PSH had bio-compatibility with human body, new bone formation ability and accelerate osteoblastic activity. So it would be the efficient bone substitute material with bio-active and biodegradable.

High concentration of calcium represses osteoblast differentiation in C2C12 cells

  • Lee, Ye Jin;Han, Younho
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.162-168
    • /
    • 2020
  • Calcium is the most abundant stored mineral in the human body and is especially vital for bone health; thus, calcium deficiency can cause bone-related diseases, such as osteopenia and osteoporosis. However, a high concentration of serum calcium, which is commonly known as hypercalcemia, can also lead to weakened bones and, in severe cases, osteosarcoma. Therefore, it is necessary to maintain the concentration of calcium that is appropriate for bone biology. In the present study, we aimed to elucidate the effects of high concentration of calcium, approximately 2 folds the normal calcium level, on osteoblast differentiation. The CaCl2 treatment showed dose-dependent suppression of the alkaline phosphatase activity and mineralized nodule formation. Calcium showed cytotoxicity at an extremely high concentration, but a moderately high concentration of calcium that results in inhibitory effects to osteoblast differentiation showed no signs of cytotoxicity. We also confirmed that the CaCl2 treatment repressed the mRNA expression and protein abundance of various osteogenic genes and transcriptional factors. Considered together, these results indicate that a high concentration of calcium negatively regulates the osteoblast differentiation of C2C12 cells.

골유합 촉진 치료제 개발을 위한 수종의 한약재 활성 검색 (Screening and Development of Novel Herbal Medicine for Bone Healing Treatment)

  • 이재동;백용현;최도영;허정은;양하루;우현수;박동석
    • Journal of Acupuncture Research
    • /
    • 제24권5호
    • /
    • pp.13-22
    • /
    • 2007
  • Objectives : The differentiation of osteoblasts is controlled by various growth factors and matrix protein expressed in bone. The aim of this study was to investigate the effects of many herbs medicine(KHBJs) for bone healing that induces osteogenic activity in human osteoblast-like SaOS-2 cells. Methods : The osteogenic effects of KHBJs were evaluated by using cell proliferation(WST-8) assay, alkaline phosphatase(ALP) activity assay, colorimetric analysis of vascular endothelial growth factor(VEGF) expression in human osteoblast like SaOS-2 cell. Also, osteogenic activity of KHBJ fractions(KHBJB and KHBJR) by activity guided fractionation were evaluated. Results : About 7 KHBJs had effect on the proliferation of osteoblast like SaOS-2 cells, and dose-dependently increased alkaline phosphatase(ALP) activity. KHBJs markedly increased expression for VEGF. Fractionated KHBJs(KHBJB or KHBJR) not enhanced more than KHBJs on osteogenic activity in SaOS-2 cells. Conclusions: This study found that 7 KHBJs had effect on proliferation, ALP activity, and VEGF expression in osteoblast like SaOS-2 cells. These results propose that KHBJs can play an important role in osteoblastic bone formation, and may possibly lead to the development of bone-forming drugs.

  • PDF

치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구 (A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast)

  • 이중규;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권1호
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Effect of microgrooves and fibronectin conjugation on the osteoblast marker gene expression and differentiation

  • Park, Su-Jung;Leesungbok, Richard;Ahn, Su-Jin;Im, Byung-Jin;Lee, Do Yun;Jee, Yu-Jin;Yoon, Joon-Ho;Cui, Taixing;Lee, Sang Cheon;Lee, Suk Won
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권6호
    • /
    • pp.496-505
    • /
    • 2015
  • PURPOSE. To determine the effect of fibronectin (FN)-conjugated, microgrooved titanium (Ti) on osteoblast differentiation and gene expression in human bone marrow-derived mesenchymal stem cells (MSCs). MATERIALS AND METHODS. Photolithography was used to fabricate the microgrooved Ti, and amine functionalization (silanization) was used to immobilize fibronectin on the titanium surfaces. Osteoblast differentiation and osteoblast marker gene expression were analyzed by means of alkaline phosphatase activity assay, extracellular calcium deposition assay, and quantitative real-time PCR. RESULTS. The conjugation of fibronectin on Ti significantly increased osteoblast differentiation in MSCs compared with non-conjugated Ti substrates. On the extracellular calcium deposition assays of MSCs at 21 days, an approximately two-fold increase in calcium concentration was observed on the etched 60-${\mu}m$-wide/10-${\mu}m$-deep microgrooved surface with fibronectin (E60/10FN) compared with the same surface without fibronectin (E60/10), and a more than four-fold increase in calcium concentration was observed on E60/10FN compared with the non-etched control (NE0) and etched control (E0) surfaces. Through a series of analyses to determine the expression of osteoblast marker genes, a significant increase in all the marker genes except type I collagen ${\alpha}1$ mRNA was seen with E60/10FN more than with any of the other groups, as compared with NE0. CONCLUSION. The FN-conjugated, microgrooved Ti substrate can provide an effective surface to promote osteoblast differentiation and osteoblast marker gene expression in MSCs.

다양한 세포외기질이 배양 골아세포의 이동에 미치는 영향 (The Effects of Various Extracellular Matrices on Motility of Cultured MC3T3-E1 Cell)

  • 박병윤;서상우;이원재;류창우;나동균;손현주;박종철
    • Archives of Plastic Surgery
    • /
    • 제32권2호
    • /
    • pp.143-148
    • /
    • 2005
  • Chemotactic migration of bone forming cell, osteoblast, is an important event during bone formation, bone remodeling, and fracture healing. Migration of cells is mediated by adhesion receptors, such as integrins, that link the cell to extracellular matrix ligands, type I collagen, fibronectin, laminin and depend on interaction between integrin and extracellular ligand. Our study was designed to investigate the effect of extracellular matrix like fibronectin, laminin, type I collagen on migration of osteoblast. Migration distance and speed of MC3T3-E1 cell on extracellular matrix-coated glass were measured for 24 hours using 0.01% type I collagen, 0.01% fibronectin, 100 microliter/ml laminin. The migration distance and speed of MC3T3-E1 cell was compared using a video-microscopy system. To determine migration speed, cells were viewed with a 4 phase- contrast lens and video recorded. Images were captured using a color CCD camera and saved in 8-bit full-color mode. The migration distance on 0.01% type I collagen or 0.01% fibronectin was longer than that on $100{\mu}l/ml$ laminin-coated glass. The migration speed on fibronectin-coated glass was 68 micrometer/hour which was fastest. The migration speed on type I collagen-coated glass was similar with that on fibronectin-coated glass. The latter two migration speeds were faster than that on no-coated glass. On the other hand, the average migration speed on laminin-coated glass was 37micrometer/hour and not different from that of control group. In conclusion, the extracelluar matrix ligands such as type I collagen and fibronectin seem to play an important role in cell migration. The type I collagen or fibronectin coated scaffold is more effective for migration of osteoblast in tissue engineering process.

The effect of biomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells

  • Lee, Ju-Min;Kim, Min-Gu;Byun, June-Ho;Kim, Gyoo-Cheon;Ro, Jung-Hoon;Hwang, Dae-Seok;Choi, Byul-Bora;Park, Geun-Chul;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제39권
    • /
    • pp.7.1-7.9
    • /
    • 2017
  • Background: This study was to investigate the effect of biomechanical stimulation on osteoblast differentiation of human periosteal-derived stem cell using the newly developed bioreactor. Methods: Human periosteal-derived stem cells were harvested from the mandible during the extraction of an impacted third molar. Using the new bioreactor, 4% cyclic equibiaxial tension force (0.5 Hz) was applied for 2 and 8 h on the stem cells and cultured for 3, 7, and 14 days on the osteogenic medium. Biochemical changes of the osteoblasts after the biomechanical stimulation were investigated. No treatment group was referred to as control group. Results: Alkaline phosphatase (ALP) activity and ALP messenger RNA (mRNA) expression level were higher in the strain group than those in the control group. The osteocalcin and osteonectin mRNA expressions were higher in the strain group compared to those in the control group on days 7 and 14. The vascular endothelial growth factor (VEGF) mRNA expression was higher in the strain group in comparison to that in the control group. Concentration of alizarin red S corresponding to calcium content was higher in the strain group than in the control group. Conclusions: The study suggests that cyclic tension force could influence the osteoblast differentiation of periosteal-derived stem cells under optimal stimulation condition and the force could be applicable for tissue engineering.