DOI QR코드

DOI QR Code

High concentration of calcium represses osteoblast differentiation in C2C12 cells

  • Lee, Ye Jin (Department of Oriental Pharmacy, College of Pharmacology, Wonkwang University) ;
  • Han, Younho (Department of Oral Pharmacology, College of Dentistry, Wonkwang University)
  • Received : 2020.10.16
  • Accepted : 2020.12.10
  • Published : 2020.12.31

Abstract

Calcium is the most abundant stored mineral in the human body and is especially vital for bone health; thus, calcium deficiency can cause bone-related diseases, such as osteopenia and osteoporosis. However, a high concentration of serum calcium, which is commonly known as hypercalcemia, can also lead to weakened bones and, in severe cases, osteosarcoma. Therefore, it is necessary to maintain the concentration of calcium that is appropriate for bone biology. In the present study, we aimed to elucidate the effects of high concentration of calcium, approximately 2 folds the normal calcium level, on osteoblast differentiation. The CaCl2 treatment showed dose-dependent suppression of the alkaline phosphatase activity and mineralized nodule formation. Calcium showed cytotoxicity at an extremely high concentration, but a moderately high concentration of calcium that results in inhibitory effects to osteoblast differentiation showed no signs of cytotoxicity. We also confirmed that the CaCl2 treatment repressed the mRNA expression and protein abundance of various osteogenic genes and transcriptional factors. Considered together, these results indicate that a high concentration of calcium negatively regulates the osteoblast differentiation of C2C12 cells.

Keywords

References

  1. Burkard D, Beckett T, Kourtjian E, Messingschlager C, Sipahi R, Padley M, Stubbart J. Effects of bone remodeling agents following teriparatide treatment. Osteoporos Int 2018;29:1351-7. doi: 10.1007/s00198-018-4434-8.
  2. Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, Miller PD, Rao SD, Kendler DL, Lindsay R, Krege JH, Alam J, Taylor KA, Melby TE, Ruff VA. Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA study. J Bone Miner Res 2018;33:298-306. doi: 10.1002/jbmr.3309.
  3. Boyce BF. Advances in osteoclast biology reveal potential new drug targets and new roles for osteoclasts. J Bone Miner Res 2013;28:711-22. doi: 10.1002/jbmr.1885.
  4. Sun S. Bone disease drug discovery: examining the interactions between osteoblast and osteoclast. Expert Opin Ther Targets 2008;12:239-51. doi: 10.1517/14728222.12.2.239.
  5. Francis RM. What do we currently know about nutrition and bone health in relation to United Kingdom public health policy with particular reference to calcium and vitamin D? Br J Nutr 2008;99:155-9. doi: 10.1017/S0007114507791924.
  6. Khammissa RAG, Fourie J, Motswaledi MH, Ballyram R, Lemmer J, Feller L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. Biomed Res Int 2018;2018:9276380. doi: 10.1155/2018/9276380.
  7. Duplomb L, Dagouassat M, Jourdon P, Heymann D. Concise review: embryonic stem cells: a new tool to study osteoblast and osteoclast differentiation. Stem Cells 2007;25:544-52. doi: 10.1634/stemcells.2006-0395.
  8. Chatakun P, Nunez-Toldra R, Diaz Lopez EJ, Gil-Recio C, Martinez-Sarra E, Hernandez-Alfaro F, Ferres-Padro E, Giner-Tarrida L, Atari M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell Mol Life Sci 2014;71:113-42. doi: 10.1007/s00018-013-1326-0.
  9. Yuen CM, Rodda SJ, Vokes SA, McMahon AP, Liu DR. Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc 2006;128:8939-46. doi: 10.1021/ja062980e.
  10. Thor K. Calcium-nutrient and messenger. Front Plant Sci 2019;10:440. doi: 10.3389/fpls.2019.00440.
  11. Crawford N. Nutrient signaling by nitrate and calcium. Plant Physiol 2015;169:911. doi: 10.1104/pp.15.01355.
  12. Einhorn TA, Levine B, Michel P. Nutrition and bone. Orthop Clin North Am 1990;21:43-50. https://doi.org/10.1016/S0030-5898(20)31564-9
  13. McKane WR, Khosla S, Burritt MF, Kao PC, Wilson DM, Ory SJ, Riggs BL. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause--a clinical research center study. J Clin Endocrinol Metab 1995;80:3458-64. doi: 10.1210/jcem.80.12.8530583.
  14. Ernster VL, Bush TL, Huggins GR, Hulka BS, Kelsey JL, Schottenfeld D. Benefits and risks of menopausal estrogen and/or progestin hormone use. Prev Med 1988;17:201-23. doi: 10.1016/0091-7435(88)90064-3.
  15. Clemens KK, Jeyakumar N, Ouedraogo AM, Thain J, Khan T. Bisphosphonate and denosumab initiation in older adults in Ontario, Canada: a population-based cohort study. Arch Osteoporos 2020;15:133. doi: 10.1007/s11657-020-00796-3.
  16. Annefeld M, Caviezel R, Schacht E, Schicketanz KH. The influence of ossein-hydroxyapatite compound ('Ossopan') on the healing of a bone defect. Curr Med Res Opin 1986;10:241-50. doi: 10.1185/03007998609110445.
  17. Kiyokawa T, Yamaguchi K, Takeya M, Takahashi K, Watanabe T, Matsumoto T, Lee SY, Takatsuki K. Hypercalcemia and osteoclast proliferation in adult T-cell leukemia. Cancer 1987;59:1187-91. doi: 10.1002/1097-0142(19870315)59:6<1187::aid-cncr2820590626>3.0.co;2-8.
  18. Roark A, Wilson BP, Eyster KM, Timmerman GL, Allard BL, Hansen KA. Hypercalcemia: an unusual etiology of a common menopausal symptom. Fertil Steril 2011;95:2434.e7-9. doi: 10.1016/j.fertnstert.2011.03.097.
  19. Rutkovskiy A, Stenslokken KO, Vaage IJ. Osteoblast differentiation at a glance. Med Sci Monit Basic Res 2016;22:95-106. doi: 10.12659/msmbr.901142.
  20. Komori T. Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 2002;87:1-8. doi: 10.1002/jcb.10276.
  21. Komori T. Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab 2003;21:193-7. doi: 10.1007/s00774-002-0408-0.
  22. Komori T. [Functions of BMPs, Runx2, and osterix in the development of bone and cartilage]. Nihon Rinsho 2005;63: 1671-7. Japanese.
  23. Choi YH, Han Y, Lee SH, Jin YH, Bahn M, Hur KC, Yeo CY, Lee KY. Cbl-b and c-Cbl negatively regulate osteoblast differentiation by enhancing ubiquitination and degradation of Osterix. Bone 2015;75:201-9. doi: 10.1016/j.bone.2015.02.026.
  24. Zhu W, He X, Hua Y, Li Q, Wang J, Gan X. The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation. J Biol Chem 2017;292:11178-88. doi: 10.1074/jbc.M116.772277.