• Title/Summary/Keyword: Human Organ Segmentation

Search Result 7, Processing Time 0.019 seconds

A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

  • Peng, Zhao;Gao, Ning;Wu, Bingzhi;Chen, Zhi;Xu, X. George
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.111-133
    • /
    • 2022
  • The exciting advancement related to the "modeling of digital human" in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.

A New Hyper Parameter of Hounsfield Unit Range in Liver Segmentation

  • Kim, Kangjik;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.103-111
    • /
    • 2020
  • Liver cancer is the most fatal cancer that occurs worldwide. In order to diagnose liver cancer, the patient's physical condition was checked by using a CT technique using radiation. Segmentation was needed to diagnose the liver on the patient's abdominal CT scan, which the radiologists had to do manually, which caused tremendous time and human mistakes. In order to automate, researchers attempted segmentation using image segmentation algorithms in computer vision field, but it was still time-consuming because of the interactive based and the setting value. To reduce time and to get more accurate segmentation, researchers have begun to attempt to segment the liver in CT images using CNNs, which show significant performance in various computer vision fields. The pixel value, or numerical value, of the CT image is called the Hounsfield Unit (HU) value, which is a relative representation of the transmittance of radiation, and usually ranges from about -2000 to 2000. In general, deep learning researchers reduce or limit this range and use it for training to remove noise and focus on the target organ. Here, we observed that the range of HU values was limited in many studies but different in various liver segmentation studies, and assumed that performance could vary depending on the HU range. In this paper, we propose the possibility of considering HU value range as a hyper parameter. U-Net and ResUNet were used to compare and experiment with different HU range limit preprocessing of CHAOS dataset under limited conditions. As a result, it was confirmed that the results are different depending on the HU range. This proves that the range limiting the HU value itself can be a hyper parameter, which means that there are HU ranges that can provide optimal performance for various models.

Generation Method of 3D Human Body Level-of-Detail Model for Virtual Reality Device using Tomographic Image (가상현실 장비를 위한 단층 촬영 영상 기반 3차원 인체 상세단계 모델 생성 기법)

  • Wi, Woochan;Heo, Yeonjin;Lee, Seongjun;Kim, Jion;Shin, Byeong-Seok;Kwon, Koojoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.4
    • /
    • pp.40-50
    • /
    • 2019
  • In recent years, it is important to visualize an accurate human body model for the low-end system in the medical imaging field where augmented reality technology and virtual reality technology are used. Decreasing the geometry of a model causes a difference from the original shape and considers the difference as an error. So, the error should be minimized while reducing geometry. In this study, the organ areas of a human body in the tomographic images such as CT or MRI is segmented and 3D geometric model is generated, thereby implementing the reconstruction method of multiple resolution level-of-detail model. In the experiment, a virtual reality platform was constructed to verify the shape of the reconstructed model, targeting the spine area. The 3D human body model and patient information can be verified using the virtual reality platform.

A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images (X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법)

  • Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.

Development of Computer Aided 3D Model From Computed Tomography Images and its Finite Element Analysis for Lumbar Interbody Fusion with Instrumentation

  • Deoghare, Ashish;Padole, Pramod
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • The purpose of this study is to clarify the mechanical behavior of human lumbar vertebrae (L3/L4) with and without fusion bone under physiological axial compression. The author has developed the program code to build the patient specific three-dimensional geometric model from the computed tomography (CT) images. The developed three-dimensional model provides the necessary information to the physicians and surgeons to visually interact with the model and if needed, plan the way of surgery in advance. The processed data of the model is versatile and compatible with the commercial computer aided design (CAD), finite element analysis (FEA) software and rapid prototyping technology. The actual physical model is manufactured using rapid prototyping technique to confirm the executable competence of the processed data from the developed program code. The patient specific model of L3/L4 vertebrae is analyzed under compressive loading condition by the FEA approach. By varying the spacer position and fusion bone with and without pedicle instrumentation, simulations were carried out to find the increasing axial stiffness so as to ensure the success of fusion technique. The finding was helpful in positioning the fusion bone graft and to predict the mechanical stress and deformation of body organ indicating the critical section.

Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image (복부 MDCT 영상으로부터 간혈관 자동 추출 알고리즘)

  • Park, Seong-Me;Lee, You-Jin;Park, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.430-437
    • /
    • 2010
  • It is essential for living donor liver transplantation that surgeon must understand the hepatic vessel structure to improve the success rate of operation. In this paper, we extract the liver boundary without other surrounding structures such as heart, stomach, and spleen using the contrast enhanced MDCT liver image sequence. After that, we extract the major hepatic veins (left, middle, right hepatic vein) with morphological filter after review the basic structure of hepatic vessel which reside in segmented liver image region. The purpose of this study is provide the overall status of transplantation operation with size estimation of resection part which is dissected along with the middle hepatic vein. The method of liver extraction is as follows: firstly, we get rid of background and muscle layer with gray level distribution ratio from sampling process. secondly, the coincident images match with unit mesh image are unified with resulted image using the corse coordinate of liver and body. thirdly, we extract the final liver image after expanding and region filling. Using the segmented liver images, we extract the hepatic vessels with morphological filter and reversed the major hepatic vessels only with a results of ascending order of vessel size. The 3D reconstructed views of hepatic vessel are generated after applying the interpolation to provide the smooth view. These 3D view are used to estimate the dissection line after identify the middle hepatic vein. Finally, the volume of resection region is calculated and we can identify the possibility of successful transplantation operation.