Generation Method of 3D Human Body Level-of-Detail Model for Virtual Reality Device using Tomographic Image

가상현실 장비를 위한 단층 촬영 영상 기반 3차원 인체 상세단계 모델 생성 기법

  • 위우찬 (인하대학교 컴퓨터공학과) ;
  • 허연진 (인하대학교 컴퓨터공학과) ;
  • 이성준 (인하대학교 컴퓨터공학과) ;
  • 김지온 (인하대학교 컴퓨터공학과) ;
  • 신병석 (인하대학교 컴퓨터공학과) ;
  • 권구주 (배화여자대학교 스마트IT과)
  • Received : 2019.07.10
  • Accepted : 2019.08.13
  • Published : 2019.08.31

Abstract

In recent years, it is important to visualize an accurate human body model for the low-end system in the medical imaging field where augmented reality technology and virtual reality technology are used. Decreasing the geometry of a model causes a difference from the original shape and considers the difference as an error. So, the error should be minimized while reducing geometry. In this study, the organ areas of a human body in the tomographic images such as CT or MRI is segmented and 3D geometric model is generated, thereby implementing the reconstruction method of multiple resolution level-of-detail model. In the experiment, a virtual reality platform was constructed to verify the shape of the reconstructed model, targeting the spine area. The 3D human body model and patient information can be verified using the virtual reality platform.

최근에는 증강 현실 기술과 가상 현실 기술이 사용되는 의료 영상 분야에서 Low-end 시스템에 대한 정확한 인체 모델을 시각화하는 것이 중요하다. 모델의 기하구조를 줄이면 원래 모양과 다른 점이 나타나고 그 차이를 오류로 간주한다. 따라서 기하구조를 축소하면서 오류를 최소화해야 한다. 본 연구에서는 CT 나 MRI 등의 단층 영상에서 인체 장기에 해당하는 영역을 분할하여 3 차원 기하학적 모델을 생성함으로써 다중 해상도의 상세 단계 모델의 재구성 방법을 구현했다. 실험에서 가상 현실 플랫폼은 척추 영역을 재구성한 모델의 모양을 검증하기 위해 구축되었다. 가상 현실 플랫폼을 이용하여 3D 인체 모델과 환자 정보를 확인할 수 있다.

Keywords

References

  1. K. Selvaraj, "Data extraction from computer acquired images of a given 3D environment for enhanced computer vision and its applications in kinematic design of robos", Journal of Computer Science, vol. 6, no. 4, pp. 425-427, Apr. 2010. https://doi.org/10.3844/jcssp.2010.425.427
  2. B. Zitova and J. Flusser, "Image registration methods: A survey", Image and Vision Computing, vol. 21, no. 11, pp. 977-1000, Oct. 2013. https://doi.org/10.1016/S0262-8856(03)00137-9
  3. Alan D. Kalvin and Russell H. Taylor, "Super-faces: polygonal mesh simplification with bounded error", IEEE Computer Graphics and Applications, vol. 16, no. 3, May. 1996.
  4. Y. Mengzhou and S. Jiaoying, "3D model reconstruction algorithm based on the texture of photos", Ruan Jian Xue Bao, vol. 11, pp. 502-506, 2000.
  5. H. J. Lee, G. T. Ha, S. H. Lee, J. K. Cha and S. H. Kim, "VREscpaeSim : An immersive virtual reality self-training serious-game learning how to evacuate from fire disaster in a subway situation", The Journal of Korean Institute of Next Generation Computing, Vol. 12 No. 4, pp. 125-132, 2016.
  6. J. W. Park, S. H. Oh, "A Study on the Development of VR-Based Life Care Contents for Post-Traumatic Stress Disorder(PTSD) for Traffic Accident", The Journal of Korean Institute of Next Generation Computing, Vol. 14 No. 3, pp. 56-65, 2018.
  7. S. Harikrishnan and J. Yogapriya, "Content based medical image retrieval using texture features", International Journal of Advanced Research in Science and Technology, 2, pp. 50-54, 2012.
  8. S.M. Haney, P.M. Thompson, T.F. Cloughesy, J.R. Alger, and A.W. Toga, "Tracking tumor growth rates in patients with malignant gliomas: A test of two algorithms", American Journal of Neuroradiology, vol. 22, no. 1, pp. 73-82, Jan. 2001.
  9. Y. Zhu, X. Papademetris, A. Sinusas, and J. Duncan, "Segmentation of left ventricle from 3D cardiac MR image sequences using a subject-specific dynamical model", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Aug. 2008.
  10. R. Gurusamy, S. Vijayan, "A machine learning approach for MRI brain tumor classification", Computers, Materials & Continua, vol. 53, no. 2, pp. 91-108, 2017.
  11. S. Harikrishnan and J. Yogapriya, "Content based medical image retrieval using texture features", International Journal of Advanced Research in Science and Technology, vol. 2, pp. 50-54, 2012.
  12. M.M. Rahman, P. Bhattacharya, and B.C. Desai, "A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback", IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 1, pp. 58-69, Jan. 2007. https://doi.org/10.1109/TITB.2006.884364
  13. C.Y. Yong, K.M. Chew, N.H. Mahmood, and I. Ariffin, "Image processing tools package in medical imaging in MATLAB", International Journal of Education and Information Technologies, vol. 6, no. 3, 2012.
  14. B. Zitova and J. Flusser, "Image registration methods: A survey", Image and Vision Computing, vol. 21, no. 11, pp. 977-1000, Oct. 2013. https://doi.org/10.1016/S0262-8856(03)00137-9
  15. M. Lofti, A. Solimani, A. Dargazany, H. Afzal, and M. Bandarabadi, "Combinig wevelet transform and neural networks for image classification", Southeastern Symposium on System Theory, 2009.
  16. H. C. Akakin and M.N. Gurcan, "Content-based microscopic image retrieval system for multi-image queries", IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 4, pp. 758-768, Jul. 2012. https://doi.org/10.1109/TITB.2012.2185829
  17. B. Ramasubramanian, G. Praphakar, and S. Murugeswari, "A novel approach for content based microscopic image retrieval system using decision tee algorithm", International Journal of Scientific & Engineering Research, vol. 4, no. 6, pp. 584-588, Jun. 2013.
  18. R. Guruvasuki and A.J.P. Arasi, "MRI brain image retrieval using multi support vector machine classifier", International Journal of Advanced Information Science and Technology, vol. 10, no. 10, pp. 29-36, Feb. 2013.
  19. K. M. Koo, E. Y. Cha, "Image recognition performance enhancements using image normalization", Human-centric Computing and Information Sciences, vol. 7, no. 1, p. 1, 2017. https://doi.org/10.1186/s13673-016-0083-0
  20. T. S. Newman and H. Yi, "A survey of the marching cubes algorithm", Computers & Graphics, Vol. 30, no. 5, pp. 854-879, 2006. https://doi.org/10.1016/j.cag.2006.07.021
  21. H. T. Yau, T. J. Yang, and Y. C. Chen, "Tooth model reconstruction based upon data fusion for orthodontic treatment simulation", Computers in biology and medicine, Vol. 48, pp. 8-16, 2014. https://doi.org/10.1016/j.compbiomed.2014.02.001
  22. U. Dierkes, S. Hildebrandt, F. Sauvigny, "Minimal Surfaces", vol. 1, 2nd ed., Springer, Heidelberg, 2010.
  23. B. Ettinger, S. Perotto, L.M. Sangalli, "Spatial regression models over two-dimensional manifolds", Tech. Rep. 54/2012, MOX - Dipartimento di Matematica, Politecnico di Milano, 2012.
  24. Amaral, L. F. Coelho, M. V. Lopes, A. K. Barros, "A Non-Quadratic Algorithm Based on the Extended Recursive Least Squares Algorithm." IEEE Signal Processing Letters, 2018.
  25. D. Drusvyatskiy, A. S. Lewis. "Error bounds, quadratic growth, and linear convergence of proximal methods." Mathematics of Operations Research, 2018.
  26. F. C. Huang, B.Y. Chen, Y.Y. Chuang, "Progressive deforming meshes based on deformation oriented decimation and dynamic connectivity updating", Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '06, Eurographics Association, 2006.
  27. L. M. Sangalli, J. O. Ramsay, T. O. Ramsay, "Spatial spline regression models", Stat. Methodol. Vol. 75, no. 4, pp. 1-23, 2013. https://doi.org/10.1111/rssb.12004
  28. K. Mittal, P. Fischer. "Mesh Smoothing for the Spectral Element Method." Journal of Scientific Computing, pp. 1-22, 2018.
  29. W. Song, L. Liu, Y. Tian, G. Sun, S. Fong, K. Cho, "A 3D localization method in indoor environments for virtual reality applications", Human-centric Computing and Information Sciences, vol. 7, no. 1, p. 39, 2017. https://doi.org/10.1186/s13673-017-0120-7
  30. C. Moro, S. Zane, S. Allan, "Virtualisation devices for student learning: Comparison between desktop-based (Oculus Rift) and mobile-based (Gear VR) virtual reality in medical and health science education." Australasian Journal of Educational Technology, vol. 33, no. 6, 2017.
  31. J. Schild, S. Misztal, B. Roth, L. Flock, T. Luiz, D. Lerner, C. Kemp, "Applying Multi-User Virtual Reality to Collaborative Medical Training", In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 775-776, March, 2018.
  32. J. Matzke, C. Ziegler, K. Martin, S. Crawford, E. Sutton, "Usefulness of virtual reality in assessment of medical student laparoscopic skill", Journal of surgical research, vol. 211, pp. 191-195, 2017. https://doi.org/10.1016/j.jss.2016.11.054
  33. L. Qian, A. Barthel, A. Johnson, G. Osgood, P. Kazanzides, N. Navab, B. Fuerst, "Comparison of optical see-through head-mounted displays for surgical interventions with object-anchored 2D-display", International journal of computer assisted radiology and surgery, Vol. 12, no. 6, pp. 901-910, 2017. https://doi.org/10.1007/s11548-017-1564-y