• Title/Summary/Keyword: Human Interleukin-2

Search Result 405, Processing Time 0.031 seconds

Anti-arthritic Effects of Buthus martensi Karsch Herbal Acupuncture, Inhibiting Interleukin-1-induced Expression of Nitric Oxide Synthase and Production of Nitric Oxide in Human Chondrocytes (전갈 약침액의 인체연골세포에서 nitric oxide synthase의 interleukin-1 유도 유전형질 발현과 nitric oxide의 생산의 억제에 관한 연구)

  • Cho, Hyun-seok;Kim, Kap-sung
    • Journal of Acupuncture Research
    • /
    • v.20 no.1
    • /
    • pp.104-119
    • /
    • 2003
  • 목적 : 면역억제 작용을 지닌 것으로 알려진 전갈약침(BMK)의 IL-1으로 야기된 1차성 골관절염 인체 연골 세포에 대한 항염증 효과 골 기능 효과에 대해 연구하였다. 방법 : 골관절염 연골에서 채취된 인체 연골세포는 ID-1(2ng/ml)에 의해 처리되어졌으며, IL-1과 BMK($10{\mu}g/ml$)를 함께 처리한 연골세포와 비교하였다. 결과 : IL-1 단독처리된 연골세포에 비해 BMK가 함께 처리된 연골세포에서 연골세포의 손실과 퇴화의 중요한 요소인 NO의 생산량이 의미있게 저하되었다. IL-1단독으로 처리된 연골세포보다 IL-1과 BMK가 함께 처리된 연골세포에서 iNOS mRNA의 단백질 합성이 의미있게 감소하였다. 또한, 전사인자로서의 NF-B의 활성화가 IL-1 단독으로 처리된 연골세포에 비하여 BMK가 함께 처리된 군에서 상대적으로 의미있게 억제되었다. 결론: 이상의 결과를 종합하면 BMK가 인제 골관절염 연골에 있어서 NF-B 활성화에 의존한 IL-1 유도염증의 치료상에 효과적인 반응억제제임을 시사하며, 골 세포의 골 재흡수 활동에 효과적임을 시사한다.

  • PDF

Interleukin-6-174 Promoter Polymorphism and Susceptibility to Hepatitis B Virus Infection as a Risk Factor for Hepatocellular Carcinoma in Iran

  • Attar, Marzieh;Azar, Saleh Shahbazi;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2395-2399
    • /
    • 2016
  • Background: Hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC). Cytokines play an important role in the regulation of immune responses and defense against viral infections. Human interleukin 6 (IL6) is a multifunctional cytokine that participates in these processes. Objective: The aim of this study was to assess the IL6-174 gene polymorphism in patients with chronic hepatitis B virus (HBV) infection as compared with healthy controls in an Iranian population. Materials and Methods: Totals of 297 HBV patients and 368 control individuals were evaluated. Genomic DNA was extracted from peripheral blood and the SSP-PCR (sequence specific primer-polymerase chain reaction) method was applied for genotyping. Results: The frequencies of genotypes C/C, G/G and C/G in HBV cases were 4.7%, 34.3%, 60.9% and in controls were 12.8%, 39.7% and 47.6%, respectively. The frequencies of G and C allele in patients and controls were 78.1%, 21.9% and 67.4%, 32.6 % respectively. There was a significant difference in the frequencies of G/G genotype (CI=1.8-7.1, OR=3.47, P=0.00001) and G allele (CI=1.34-2.23, OR=1.72, P=0.0001) between HBV patients and the control group. Conclusions: These findings suggest that the IL6-174 C/G genotype and the G allele are strongly associated with susceptibility to HBV infection. Demographic information showed that most of the subjects were male (74.4%). According to high frequency of G/G genotype in male participants (63.1%) men probably are more susceptible to hepatitis than women.

Intracellular Signaling Pathways for Type II IgE Receptor (CD23) Induction by Interleukin - 4 and Anti - CD40 Antibody

  • Kim, Hyun-Il;Park, Hee-Jeoung;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.30 no.6
    • /
    • pp.431-437
    • /
    • 1997
  • Since the role of CD40 on the interleukin-4(IL-4) -induced B cell activation has been strongly implicated in the agumentation of IgE production and response, we have investigated the intracelluar signaling pathways utilized by IL-4 and CD40 for type II IgE receptor (CD23) expression. IL-4 and anti-CD40 antibody treatment of human B cells, independently caused a rapid induction of CD23 gene activation within 2 h. There was a noticeable synergism between the action of the two agents inducing CD23 expression: the addition of anti-CD40 to the IL-4-treated culture significantly agumented the IL-4-induced CD23 on both mRNA and surface protein levels, and the inclusion of IL-4 in the anti-CD40-treated cells caused a further increase of CD23 expression far above the maximal level induced by anti-CD40. Protein tyrosine kinase (PTK) inhibitors effectively suppressed the both IL-4- and anti -CD40-induced CD23 expression. whereas protein kinase C (PKC) inhibitors had no effects. Electrophoretic mobility shift assays (EMSA) have shown that IL-4 and anti-CD40 induce the activation of NF-IL-4 and $NF-_{K}B$, respectively, binding to the CD23 promoter, both in a PKC-independent and PTK-dependent manner. These data suggest that the synergistic activation of CD23 gene expression by IL-4 and anti-CD40 is mediated by co-operative action of distinct nuclear factors. each of which is rapidly activated via PKC-independent and PTK-dependent process.

  • PDF

In vitro and in vivo pharmacokinetic characterization of LMT-28 as a novel small molecular interleukin-6 inhibitor

  • Ahn, Sung-Hoon;Heo, Tae-Hwe;Jun, Hyun-Sik;Choi, Yongseok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.670-677
    • /
    • 2020
  • Objective: Interleukin-6 (IL-6) is a T cell-derived B cell stimulating factor which plays an important role in inflammatory diseases. In this study, the pharmacokinetic properties of LMT-28 including physicochemical property, in vitro liver microsomal stability and an in vivo pharmacokinetic study using BALB/c mice were characterized. Methods: LMT-28 has been synthesized and is being developed as a novel therapeutic IL-6 inhibitor. The physicochemical properties and in vitro pharmacokinetic profiles such as liver microsomal stability and Madin-Darby canine kidney (MDCK) cell permeability assay were examined. For in vivo pharmacokinetic studies, pharmacokinetic parameters using BALB/c mice were calculated. Results: The logarithm of the partition coefficient value (LogP; 3.65) and the apparent permeability coefficient values (Papp; 9.7×10-6 cm/s) showed that LMT-28 possesses a moderate-high cell permeability property across MDCK cell monolayers. The plasma protein binding rate of LMT-28 was 92.4% and mostly bound to serum albumin. The metabolic half-life (t1/2) values of LMT-28 were 15.3 min for rat and 21.9 min for human at the concentration 1 μM. The area under the plasma drug concentration-time curve and Cmax after oral administration (5 mg/kg) of LMT-28 were 302±209 h·ng/mL and 137±100 ng/mL, respectively. Conclusion: These data suggest that LMT-28 may have good physicochemical and pharmacokinetic properties and may be a novel oral drug candidate as the first synthetic IL-6 inhibitor to ameliorate mammalian inflammation.

Inhibitory Effect of Radish on Gastric Cell Toxicity and Interleukin-8 Production Induced by Helicobacter pylori (Helicobacter pylori에 의한 위세포독성 및 interleukin-8 생성에 미치는 무의 억제효과)

  • Shon Yun Hee;Suh Jeong Ill;Park In Kyung;Hwang Cher Won;Kim Cheorl Ho;Nam Kyung Soo
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.595-599
    • /
    • 2005
  • The efforts of Korean and Japanese radishes on the viability and interleukin (JL)-8 production by Helicobacter pylori were investigated in human gastric epithelial cell. Cell viability was significantly decreased when they were incubated with H. pylori toxin (p <0.05, p<0.01 and p<0.005). Co-incubation with Korean or Japanese radish increased H. pylori toxin-inhibited cell growth in a concentration-dependent manner. The production of IL-8 was greatly increased in H. pylori-infected gastric epithelial cell in concentration- and time-dependent manners. The increased production of IL-8 was significantly inhibited by Korean (p<0.05 and p<0.01) or Japanese (p<0.05) radishes $(5\~10mg/ml)$. These results indicate that Korean and Japanese radishes have protective effects on H. pylori-inhibited cell growth and H. pylori-induced gastric mucosal cell inflammation by suppressing the production of inflammatory cytokine (IL-8) from gastric epithelial cell.

The immune enhancing effects and characteristics of Bifidobacterium longum and Bifidobacterium breve for the probiotic use in humans and animals

  • Park, Ho-Eun;Um, Hyun-Bum;Lee, Wan-Kyu
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.65-72
    • /
    • 2018
  • The purpose of this study was to investigate probiotic characteristics and immune enhancing effects of Bifidobacterium (B.) longum KBB1-26 and BIF-4, B. breve KBB5-22 isolated from human intestine for probiotic use in humans and animals. We measured acid, bile and heat tolerance, antimicrobial activity against pathogenic bacteria, Escherichia (E.) coli, Salmonella (S.) Enteritidis, Staphylococcus (S.) aureus, and Listeria (L.) monocytogenes. Immune enhancing effects of B. longum and B. breve were investigated by measuring nitric oxide (NO), nuclear factor ($NF-{\kappa}b$), $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), interleukin-12 (IL-12) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) in RAW 264.7 cells or RAW BLUE cells. B. longum KBB1-26 was survived at pH 2.0. B. longum KBB1-26 and BIF-4, B. breve KBB5-22 also showed tolerance to 0.3% of oxgall bile salt. B. longum KBB1-26 was able to survive at $70^{\circ}C$ and $80^{\circ}C$ for 20 min. KBB1-26 showed the antimicrobial inhibition zone to pathogenic bacteria such as E. coli (12 mm), S. Enteritidis (14 mm), S. aureus (14 mm) and L. monocytogenes (41 mm). The production of NO ($4.5{\pm}0.00{\mu}M/mL$) and $IL-1{\beta}$ ($39.7{\pm}0.55pg/mL$) of KBB1-26 significantly higher than BIF-4 and KBB5-22, respectively. In addition, KBB1-26 and KBB5-22 induce the production of high level of $TNF-{\alpha}$ and IL-6 in macrophages. Collectively, B. longum KBB1-26 have acid, bile, heat tolerance, antimicrobial activity and immune enhancing effects. These results suggest that KBB1-26 can be used as probiotics for humans and animals.

Antimicrobial Effect on the Periodontal Pathogens and Anti-inflammatory Effect of Artemisiae Iwayomogii Herba (한인진(韓茵蔯)의 치주염세균에 대한 항균효과 및 항염효가)

  • Kim, Young-Hong;Jeong, Mi-Young;Lee, Na-Kyung;Lee, Jin-Yong;Herr, Yeek;Lee, Je-Hyun;Lim, Sabina
    • The Korea Journal of Herbology
    • /
    • v.23 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Objectives : The purpose of this study was to evaluate on the antimicrobial effect on the periodontal pathogens and anti-inflammatory effect of Artemisiae Iwayomogii Herba. Artemisiae Iwayomogii Herba has been used for treating as Artemisiae Capilaris Herba in Korea. Methods : Artemisiae Iwayomogii Herba was prepared by extracting medicinal herb with water. We investigated antimicrobial activity by the minimun inhibitory concentration (MIC) test. We also investigated inhibition of IL-$1{\beta}$-induced collagenase-l(MMP-l), stromelysin-1(MMP-3), interleukin-6 gene expression in human gingival fibroblasts. Results : The antimicrobial effect of Artemisiae Iwayomogii Herba was evaluated with MIC against periodontopathogens; Porphyromonas gingivalis 2561, W50, A7A1-28, 9-14K-1, Prevotella intermedia28, and Actinobacillus actinomycetemcomitans Y4, MICs of Artemisiae Iwayomogii Herba were 0.156 mg/ml, 0.625 mg/ml, 0.313 mg/ml, 1.25 mg/ml, 10 mg/ml and 10 mg/ml. The anti-inflammatory effect of Artemisiae Iwayomogii Herba was evaluated with Influence of herbs on the IL-$1{\beta}$-induced expression of MMP-1, MMP-3, interleukin-6, IL-$1{\beta}$ increased MMP-1, MMP-3, interleukin-6 mRNA levels. Artemisiae Iwayomogii Herba significantly inhibited IL-$1{\beta}$-induced MMP-1, MMP-3, interleukin-6 gene expressions in a dose-dependent manner. Conclusions : These results suggested that Artemisiae Iwayomogii Herba might reduce the excessive proteolytic capacity of the gingival fibroblast during inflammation and could be developed a new drug in periodontitis.

  • PDF

NOD2 signaling pathway is involved in fibronectin fragment-induced pro-catabolic factor expressions in human articular chondrocytes

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.373-378
    • /
    • 2019
  • The nucleotide-binding and oligomerization domain (NOD) is an innate pattern recognition receptor that recognizes pathogen- and damage-associated molecular patterns. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) is a matrix degradation product found in the synovial fluids of patients with osteoarthritis (OA). We investigated whether NOD2 was involved in 29-kDa FN-f-induced pro-catabolic gene expression in human chondrocytes. The expression of mRNA and protein was measured using quantitative real-time polymerase chain reaction (qrt-PCR) and Western blot analysis. Small interfering RNAs were used for knockdown of NOD2 and toll-like receptor 2 (TLR-2). An immunoprecipitation assay was performed to examine protein interactions. The NOD2 levels in human OA cartilage were much higher than in normal cartilage. NOD1 and NOD2 expression, as well as pro-inflammatory cytokines, including interleukin-1beta (IL-$1{\beta}$) and tumor necrosis factor-alpha (TNF-${\alpha}$), were upregulated by 29-kDa FN-f in human chondrocytes. NOD2 silencing showed that NOD2 was involved in the 29-kDa FN-f-induced expression of TLR-2. Expressions of IL-6, IL-8, matrix metalloproteinase (MMP)-1, -3, and -13 were also suppressed by TLR-2 knockdown. Furthermore, NOD2 and TLR-2 knockdown data demonstrated that both NOD2 and TLR-2 modulated the expressions of their adaptors, receptorinteracting protein 2 (RIP2) and myeloid differentiation 88, in 29-kDa FN-f-treated chondrocytes. 29-kDa FN-f enhanced the interaction of NOD2, RIP2 and transforming growth factor beta-activated kinase 1 (TAK1), an indispensable signaling intermediate in the TLR-2 signaling pathway, and activated nuclear factor-${\kappa}B$ (NF-${\kappa}B$), subsequently leading to increased expressions of pro-inflammatory cytokines and cartilage-degrading enzymes. These results demonstrate that 29-kDa FN-f modulated pro-catabolic responses via cross-regulation of NOD2 and TLR-2 signaling pathways.

Efficient Interleukin-21 Production by Optimization of Codon and Signal Peptide in Chinese Hamster Ovarian Cells

  • Cho, Hee Jun;Oh, Byung Moo;Kim, Jong-Tae;Lim, Jeewon;Park, Sang Yoon;Hwang, Yo Sep;Baek, Kyoung Eun;Kim, Bo-Yeon;Choi, Inpyo;Lee, Hee Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.304-310
    • /
    • 2019
  • Interleukin-21 is a common ${\gamma}$-chain cytokine that controls the immune responses of B cells, T cells, and natural killer cells. Targeting IL-21 to strengthen the immune system is promising for the development of vaccines as well as anti-infection and anti-tumor therapies. However, the practical application of IL-21 is limited by the high production cost. In this study, we improved IL-21 production by codon optimization and selection of appropriate signal peptide in CHO-K1 cells. Codon-optimized or non-optimized human IL-21 was stably transfected into CHO-K1 cells. IL-21 expression was 10-fold higher for codon-optimized than non-optimized IL-21. We fused five different signal peptides to codon-optimized mature IL-21 and evaluated their effect on IL-21 production. The best result (a 3-fold increase) was obtained using a signal peptide derived from human azurocidin. Furthermore, codon-optimized IL-21 containing the azurocidin signal peptide promoted $IFN-{\gamma}$ secretion and STAT3 phosphorylation in NK-92 cells similar to codon-optimized IL-21 containing original signal peptide. Collectively, these results indicate that codon optimization and azurocidin signal peptides provide an efficient approach for the high-level production of IL-21 as a biopharmaceutical.

Megakaryocyte-Derived IL-8 Acts as a Paracrine Factor for Prostate Cancer Aggressiveness through CXCR2 Activation and Antagonistic AR Downregulation

  • Sadan, Dahal;Prakash, Chaudhary;Yi-Sook, Jung;Jung-Ae, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.210-218
    • /
    • 2023
  • Prostate cancer is the fifth leading cause of cancer-related mortality in men, primarily because of treatment resistance, recurrence, and metastasis. In the present study, we investigated the role of paracrine interleukin-8 (IL-8) in the antagonistic expression of IL-8 and androgen receptor (AR), and the contribution of IL-8 to prostate cancer aggressiveness. In hormone-responsive LNCaP cells that do not express IL-8, recombinant IL-8 treatment significantly increased expressions of IL-8, CXC chemokine receptor 2 (CXCR2), matrix metalloproteinase (MMP)-2/9, Snail, and vimentin. IL-8 treatment significantly decreased AR and E-cadherin expression. IL-8-induced gene expression changes were suppressed by navarixin, a CXCR1/2 inhibitor, and gallein, a Gβγ inhibitor. In PC-3 androgen-refractory prostate cancer cells, IL-8 knockdown reduced expressions of CXCR2, MMP-2/9, Snail, and vimentin, and increased AR and E-cadherin expressions at the mRNA and protein levels. Co-culture with MEG-01 human megakaryocytic cells secreting high levels of IL-8 induced gene expression changes in both LNCaP and PC-3 cells, similar to those induced by IL-8 treatment. The altered gene expressions were accompanied by significant activation of transcription factor Snail in LNCaP and PC-3 cells. Treatment with the CXCR blocker navarixin inhibited the invasion of PC-3 cells but not LNCaP cells. However, invasion induced by MEG-01 was inhibited by navarixin in both LNCaP and PC-3 cells. The collective findings demonstrate that IL-8 enhances CXCR2 expression, which antagonistically regulates AR expression. More importantly, through changes in IL-8/CXCR2-regulated gene expression, IL-8 induces antiandrogen therapy resistance and epithelial-mesenchymal transition in prostate cancer.