References
- Rochman Y, Spolski R, Leonard WJ. 2009. New insights into the regulation of T cells by gamma(c) family cytokines. Nat. Rev. Immunol. 9: 480-490. https://doi.org/10.1038/nri2580
- Spolski R and Leonard WJ. 2014. Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 13: 379-95. https://doi.org/10.1038/nrd4296
-
Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, et al. 2001. Cutting edge: the common
$\gamma$ -chain is an indispensable subunit of the IL-21 receptor complex. J. Immunol. 167: 1-5. https://doi.org/10.4049/jimmunol.167.1.1 - Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
- Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329. https://doi.org/10.1007/s12275-017-7075-2
- Spolski R, Leonard WJ. 2008. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26: 57-79. https://doi.org/10.1146/annurev.immunol.26.021607.090316
- Spolski R, Leonard WJ. 2008. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr. Opin. Immunol. 20: 295-301. https://doi.org/10.1016/j.coi.2008.02.004
- Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, et al. 2000. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408: 57-63. https://doi.org/10.1038/35040504
-
Park YK, Shin DJ, Cho D, Kim SK, Lee JJ, Shin MG et al. 2012. Interleukin-21 increases direct cytotoxicity and
$IFN-\gamma$ production of ex vivo expanded NK cells towards breast cancer cells. Anticancer Res. 32: 839-846. - Davis ID, Skrumsager BK, Cebon J, et al. 2007. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin. Cancer Res. 13: 3630-3636. https://doi.org/10.1158/1078-0432.CCR-07-0410
- Thompson JA, Curti BD, Redman BG, et al. 2008. Phase I study of recombinant interleukin-21 in patient with metastatic melanoma and renal cell carcinoma. J. Clin. Oncol. 26: 2034-2039. https://doi.org/10.1200/JCO.2007.14.5193
- Petrella TM, Tozer R, Belanger K, et al. 2012. Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J. Clin. Oncol. 30: 3396-3401. https://doi.org/10.1200/JCO.2011.40.0655
- Zhu J. 2012. Mammalian cell protein expression for biopharmaceutical production. Biotechnol. Adv. 30: 1158-1170. https://doi.org/10.1016/j.biotechadv.2011.08.022
- Walsh G. 2014. Biopharmaceutical benchmarks. Nat. Biotechnol. 32: 992-1000. https://doi.org/10.1038/nbt.3040
- Khan KH. 2013. Gene expression in Mammalian cells and its applications. Adv. Pharm. Bull. 3: 257-263.
- Hung F, Deng L, Ravnikar P, Condon R, Li B, Do L, et al. 2010. mRNA stability and antibody production in CHO cells: improvement through gene optimization. Biotechnol. J. 5: 393-401. https://doi.org/10.1002/biot.200900192
- You M, Yang Y, Zhong C, Chen F, Wang X, Jia T, et al. 2018. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-8986-5. [Epub ahead of print]
- Jeiranikhameneh M, Moshiri F, Keyhan Falasafi S, Zomorodipour A. 2017. Designing signal peptides for efficient periplasmic expression of human growth hormone in Escherichia coli. J. Microbiol. Biotechnol. 27: 1999-2009. https://doi.org/10.4014/jmb.1703.03080
- Attallah C, Etcheverrigaray M, Kratje R, Oggero M. 2017. A highly efficient modified human serum albumin signal peptide to secrete proteins in cells derived from different mammalian species. Protein Expr. Purif. 132: 27-33. https://doi.org/10.1016/j.pep.2017.01.003
- Haryadi R, Ho S, Kok YJ, Pu HX, Zheng L, Pereira NA, et al. 2015. Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS One 10: e0116878. https://doi.org/10.1371/journal.pone.0116878
- Kober L, Zehe C, Bode J. 2013. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol. Bioeng. 110: 1164-1173. https://doi.org/10.1002/bit.24776
- Knappskog S, Ravneberg H, Gjerdrum C, Trosse C, Stern B, Pryme IF. 2007. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J. Biotechnol. 128: 705-715. https://doi.org/10.1016/j.jbiotec.2006.11.026
- Cho HJ, Kim JT, Lee SJ, Hwang YS, Park SY, Kim BY ,et al. 2018. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion. Cancer Lett. 417: 141-151. https://doi.org/10.1016/j.canlet.2018.01.002
- Shin JS, Ku KB, Jang Y, Yoon YS, Shin D, Kwon OS, et al. 2017. Comparison of anti-influenza virus activity and pharmacokinetics of oseltamivir free base and oseltamivir phosphate. J. Microbiol. 55: 979-983. https://doi.org/10.1007/s12275-017-7371-x
- Kim JH, Lee CH, Lee SW. 2016. Hepatitis C virus infection stimulates transforming growth factor-beta1 expression through up-regulating miR-192. J. Microbiol. 54: 520-526. https://doi.org/10.1007/s12275-016-6240-3
-
Hong S, Yu JW. 2018. Prolonged exposure to lipopolysaccharide induces NLRP3-independent maturation and secretion of interleukin (IL)-
$1{\beta}$ in macrophages. J. Microbiol. Biotechnol. 28: 115-121. https://doi.org/10.4014/jmb.1709.09017 - Bhardwaj M, Cho HJ, Paul S, Jakhar R, Khan I, Lee SJ et al. 2017. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget. 9: 3278-3291. https://doi.org/10.18632/oncotarget.22890
- Choi DW, Jung SY, Kang J, Nam YD, Lim SI, Kim KT et al. 2018. Immune-enhancing effect of nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a mouse model of cyclophosphamide-induced immunosuppression. J. Microbiol. Biotechnol. 28: 218-226. https://doi.org/10.4014/jmb.1709.09024
- Cho HJ, Hwang YS, Yoon J, Lee M, Lee HG, Daar IO. 2018. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 37: 861-872. https://doi.org/10.1038/onc.2017.386
- Yoon J, Hwang YS, Lee M, Sun J, Cho HJ, Knapik L, et al. 2018. TBC1d24-ephrinB2 interaction regulates contact inhibition of locomotion in neural crest cell migration. Nat. Commun. 9: 3491. https://doi.org/10.1038/s41467-018-05924-9
- Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
- Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
- Lai T, Yang Y, Ng SK. 2013. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6: 579-603. https://doi.org/10.3390/ph6050579
- Schaub J, Clemens C, Schorn P, Hildebrandt T, Rust W, Mennerich D, et al. 2010. CHO gene expression profiling in biopharmaceutical process analysis and design. Biotechnol. Bioeng. 105: 431-438. https://doi.org/10.1002/bit.22549
- Reinhart D, Damjanovic L, Kaisermayer C, Kunert R. 2015. Benchmarking of commercially available CHO cell culture media for antibody production. Appl. Microbiol. Biotechnol. 99: 4645-4657. https://doi.org/10.1007/s00253-015-6514-4
- Han JH, Choi YS, Kim WJ, Jeon YH, Lee SK, Lee BJ, et al. 2010. Codon optimization enhances protein expression of human peptide deformylase in E. coli. Protein Expr. Purif. 70: 224-230. https://doi.org/10.1016/j.pep.2009.10.005
- Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, et al. 2011. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 6: e17596. https://doi.org/10.1371/journal.pone.0017596
- Andrews DW, Perara E, Lesser C, Lingappa VR. 1988. Sequences beyond the cleavage site influence signal peptide function. J. Biol. Chem. 263: 15791-15798. https://doi.org/10.1016/S0021-9258(19)37658-6
- Wiren KM, Potts JT Jr, Kronenberg HM. 1988. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. J. Biol. Chem. 263: 19771-19777. https://doi.org/10.1016/S0021-9258(19)77701-1
- Butler M, Spearman M. 2014. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 30: 107-112. https://doi.org/10.1016/j.copbio.2014.06.010
- Zhang P, Chan KF, Haryadi R, Bardor M, Song Z. 2013. CHO glycosylation mutants as potential host cells to produce therapeutic proteins with enhanced efficacy. Adv. Biochem. Eng. Biotechnol. 131: 63-87. https://doi.org/10.1007/10_2012_163
Cited by
- Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems vol.104, pp.13, 2020, https://doi.org/10.1007/s00253-020-10640-w
- Expression of Secreted Neutrophil Gelatinase-Associated Lipocalin in 293T Cell Using the Inducible Dual-Function System vol.9, pp.5, 2019, https://doi.org/10.3390/pr9050855
- Evaluation of artificial signal peptides for secretion of two lysosomal enzymes in CHO cells vol.478, pp.12, 2019, https://doi.org/10.1042/bcj20210015