DOI QR코드

DOI QR Code

Efficient Interleukin-21 Production by Optimization of Codon and Signal Peptide in Chinese Hamster Ovarian Cells

  • Cho, Hee Jun (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Byung Moo (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jong-Tae (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lim, Jeewon (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Sang Yoon (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hwang, Yo Sep (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Baek, Kyoung Eun (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Bo-Yeon (Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Inpyo (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Hee Gu (Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2018.11.22
  • Accepted : 2018.11.29
  • Published : 2019.02.28

Abstract

Interleukin-21 is a common ${\gamma}$-chain cytokine that controls the immune responses of B cells, T cells, and natural killer cells. Targeting IL-21 to strengthen the immune system is promising for the development of vaccines as well as anti-infection and anti-tumor therapies. However, the practical application of IL-21 is limited by the high production cost. In this study, we improved IL-21 production by codon optimization and selection of appropriate signal peptide in CHO-K1 cells. Codon-optimized or non-optimized human IL-21 was stably transfected into CHO-K1 cells. IL-21 expression was 10-fold higher for codon-optimized than non-optimized IL-21. We fused five different signal peptides to codon-optimized mature IL-21 and evaluated their effect on IL-21 production. The best result (a 3-fold increase) was obtained using a signal peptide derived from human azurocidin. Furthermore, codon-optimized IL-21 containing the azurocidin signal peptide promoted $IFN-{\gamma}$ secretion and STAT3 phosphorylation in NK-92 cells similar to codon-optimized IL-21 containing original signal peptide. Collectively, these results indicate that codon optimization and azurocidin signal peptides provide an efficient approach for the high-level production of IL-21 as a biopharmaceutical.

Keywords

References

  1. Rochman Y, Spolski R, Leonard WJ. 2009. New insights into the regulation of T cells by gamma(c) family cytokines. Nat. Rev. Immunol. 9: 480-490. https://doi.org/10.1038/nri2580
  2. Spolski R and Leonard WJ. 2014. Interleukin-21: a double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 13: 379-95. https://doi.org/10.1038/nrd4296
  3. Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, et al. 2001. Cutting edge: the common $\gamma$-chain is an indispensable subunit of the IL-21 receptor complex. J. Immunol. 167: 1-5. https://doi.org/10.4049/jimmunol.167.1.1
  4. Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
  5. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329. https://doi.org/10.1007/s12275-017-7075-2
  6. Spolski R, Leonard WJ. 2008. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26: 57-79. https://doi.org/10.1146/annurev.immunol.26.021607.090316
  7. Spolski R, Leonard WJ. 2008. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr. Opin. Immunol. 20: 295-301. https://doi.org/10.1016/j.coi.2008.02.004
  8. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, et al. 2000. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408: 57-63. https://doi.org/10.1038/35040504
  9. Park YK, Shin DJ, Cho D, Kim SK, Lee JJ, Shin MG et al. 2012. Interleukin-21 increases direct cytotoxicity and $IFN-\gamma$ production of ex vivo expanded NK cells towards breast cancer cells. Anticancer Res. 32: 839-846.
  10. Davis ID, Skrumsager BK, Cebon J, et al. 2007. An open-label, two-arm, phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin. Cancer Res. 13: 3630-3636. https://doi.org/10.1158/1078-0432.CCR-07-0410
  11. Thompson JA, Curti BD, Redman BG, et al. 2008. Phase I study of recombinant interleukin-21 in patient with metastatic melanoma and renal cell carcinoma. J. Clin. Oncol. 26: 2034-2039. https://doi.org/10.1200/JCO.2007.14.5193
  12. Petrella TM, Tozer R, Belanger K, et al. 2012. Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J. Clin. Oncol. 30: 3396-3401. https://doi.org/10.1200/JCO.2011.40.0655
  13. Zhu J. 2012. Mammalian cell protein expression for biopharmaceutical production. Biotechnol. Adv. 30: 1158-1170. https://doi.org/10.1016/j.biotechadv.2011.08.022
  14. Walsh G. 2014. Biopharmaceutical benchmarks. Nat. Biotechnol. 32: 992-1000. https://doi.org/10.1038/nbt.3040
  15. Khan KH. 2013. Gene expression in Mammalian cells and its applications. Adv. Pharm. Bull. 3: 257-263.
  16. Hung F, Deng L, Ravnikar P, Condon R, Li B, Do L, et al. 2010. mRNA stability and antibody production in CHO cells: improvement through gene optimization. Biotechnol. J. 5: 393-401. https://doi.org/10.1002/biot.200900192
  17. You M, Yang Y, Zhong C, Chen F, Wang X, Jia T, et al. 2018. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-8986-5. [Epub ahead of print]
  18. Jeiranikhameneh M, Moshiri F, Keyhan Falasafi S, Zomorodipour A. 2017. Designing signal peptides for efficient periplasmic expression of human growth hormone in Escherichia coli. J. Microbiol. Biotechnol. 27: 1999-2009. https://doi.org/10.4014/jmb.1703.03080
  19. Attallah C, Etcheverrigaray M, Kratje R, Oggero M. 2017. A highly efficient modified human serum albumin signal peptide to secrete proteins in cells derived from different mammalian species. Protein Expr. Purif. 132: 27-33. https://doi.org/10.1016/j.pep.2017.01.003
  20. Haryadi R, Ho S, Kok YJ, Pu HX, Zheng L, Pereira NA, et al. 2015. Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS One 10: e0116878. https://doi.org/10.1371/journal.pone.0116878
  21. Kober L, Zehe C, Bode J. 2013. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol. Bioeng. 110: 1164-1173. https://doi.org/10.1002/bit.24776
  22. Knappskog S, Ravneberg H, Gjerdrum C, Trosse C, Stern B, Pryme IF. 2007. The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J. Biotechnol. 128: 705-715. https://doi.org/10.1016/j.jbiotec.2006.11.026
  23. Cho HJ, Kim JT, Lee SJ, Hwang YS, Park SY, Kim BY ,et al. 2018. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion. Cancer Lett. 417: 141-151. https://doi.org/10.1016/j.canlet.2018.01.002
  24. Shin JS, Ku KB, Jang Y, Yoon YS, Shin D, Kwon OS, et al. 2017. Comparison of anti-influenza virus activity and pharmacokinetics of oseltamivir free base and oseltamivir phosphate. J. Microbiol. 55: 979-983. https://doi.org/10.1007/s12275-017-7371-x
  25. Kim JH, Lee CH, Lee SW. 2016. Hepatitis C virus infection stimulates transforming growth factor-beta1 expression through up-regulating miR-192. J. Microbiol. 54: 520-526. https://doi.org/10.1007/s12275-016-6240-3
  26. Hong S, Yu JW. 2018. Prolonged exposure to lipopolysaccharide induces NLRP3-independent maturation and secretion of interleukin (IL)-$1{\beta}$ in macrophages. J. Microbiol. Biotechnol. 28: 115-121. https://doi.org/10.4014/jmb.1709.09017
  27. Bhardwaj M, Cho HJ, Paul S, Jakhar R, Khan I, Lee SJ et al. 2017. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget. 9: 3278-3291. https://doi.org/10.18632/oncotarget.22890
  28. Choi DW, Jung SY, Kang J, Nam YD, Lim SI, Kim KT et al. 2018. Immune-enhancing effect of nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a mouse model of cyclophosphamide-induced immunosuppression. J. Microbiol. Biotechnol. 28: 218-226. https://doi.org/10.4014/jmb.1709.09024
  29. Cho HJ, Hwang YS, Yoon J, Lee M, Lee HG, Daar IO. 2018. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene 37: 861-872. https://doi.org/10.1038/onc.2017.386
  30. Yoon J, Hwang YS, Lee M, Sun J, Cho HJ, Knapik L, et al. 2018. TBC1d24-ephrinB2 interaction regulates contact inhibition of locomotion in neural crest cell migration. Nat. Commun. 9: 3491. https://doi.org/10.1038/s41467-018-05924-9
  31. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
  32. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
  33. Lai T, Yang Y, Ng SK. 2013. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals 6: 579-603. https://doi.org/10.3390/ph6050579
  34. Schaub J, Clemens C, Schorn P, Hildebrandt T, Rust W, Mennerich D, et al. 2010. CHO gene expression profiling in biopharmaceutical process analysis and design. Biotechnol. Bioeng. 105: 431-438. https://doi.org/10.1002/bit.22549
  35. Reinhart D, Damjanovic L, Kaisermayer C, Kunert R. 2015. Benchmarking of commercially available CHO cell culture media for antibody production. Appl. Microbiol. Biotechnol. 99: 4645-4657. https://doi.org/10.1007/s00253-015-6514-4
  36. Han JH, Choi YS, Kim WJ, Jeon YH, Lee SK, Lee BJ, et al. 2010. Codon optimization enhances protein expression of human peptide deformylase in E. coli. Protein Expr. Purif. 70: 224-230. https://doi.org/10.1016/j.pep.2009.10.005
  37. Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, et al. 2011. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 6: e17596. https://doi.org/10.1371/journal.pone.0017596
  38. Andrews DW, Perara E, Lesser C, Lingappa VR. 1988. Sequences beyond the cleavage site influence signal peptide function. J. Biol. Chem. 263: 15791-15798. https://doi.org/10.1016/S0021-9258(19)37658-6
  39. Wiren KM, Potts JT Jr, Kronenberg HM. 1988. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. J. Biol. Chem. 263: 19771-19777. https://doi.org/10.1016/S0021-9258(19)77701-1
  40. Butler M, Spearman M. 2014. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 30: 107-112. https://doi.org/10.1016/j.copbio.2014.06.010
  41. Zhang P, Chan KF, Haryadi R, Bardor M, Song Z. 2013. CHO glycosylation mutants as potential host cells to produce therapeutic proteins with enhanced efficacy. Adv. Biochem. Eng. Biotechnol. 131: 63-87. https://doi.org/10.1007/10_2012_163

Cited by

  1. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems vol.104, pp.13, 2020, https://doi.org/10.1007/s00253-020-10640-w
  2. Expression of Secreted Neutrophil Gelatinase-Associated Lipocalin in 293T Cell Using the Inducible Dual-Function System vol.9, pp.5, 2019, https://doi.org/10.3390/pr9050855
  3. Evaluation of artificial signal peptides for secretion of two lysosomal enzymes in CHO cells vol.478, pp.12, 2019, https://doi.org/10.1042/bcj20210015