DOI QR코드

DOI QR Code

Megakaryocyte-Derived IL-8 Acts as a Paracrine Factor for Prostate Cancer Aggressiveness through CXCR2 Activation and Antagonistic AR Downregulation

  • Received : 2023.01.09
  • Accepted : 2023.01.25
  • Published : 2023.03.01

Abstract

Prostate cancer is the fifth leading cause of cancer-related mortality in men, primarily because of treatment resistance, recurrence, and metastasis. In the present study, we investigated the role of paracrine interleukin-8 (IL-8) in the antagonistic expression of IL-8 and androgen receptor (AR), and the contribution of IL-8 to prostate cancer aggressiveness. In hormone-responsive LNCaP cells that do not express IL-8, recombinant IL-8 treatment significantly increased expressions of IL-8, CXC chemokine receptor 2 (CXCR2), matrix metalloproteinase (MMP)-2/9, Snail, and vimentin. IL-8 treatment significantly decreased AR and E-cadherin expression. IL-8-induced gene expression changes were suppressed by navarixin, a CXCR1/2 inhibitor, and gallein, a Gβγ inhibitor. In PC-3 androgen-refractory prostate cancer cells, IL-8 knockdown reduced expressions of CXCR2, MMP-2/9, Snail, and vimentin, and increased AR and E-cadherin expressions at the mRNA and protein levels. Co-culture with MEG-01 human megakaryocytic cells secreting high levels of IL-8 induced gene expression changes in both LNCaP and PC-3 cells, similar to those induced by IL-8 treatment. The altered gene expressions were accompanied by significant activation of transcription factor Snail in LNCaP and PC-3 cells. Treatment with the CXCR blocker navarixin inhibited the invasion of PC-3 cells but not LNCaP cells. However, invasion induced by MEG-01 was inhibited by navarixin in both LNCaP and PC-3 cells. The collective findings demonstrate that IL-8 enhances CXCR2 expression, which antagonistically regulates AR expression. More importantly, through changes in IL-8/CXCR2-regulated gene expression, IL-8 induces antiandrogen therapy resistance and epithelial-mesenchymal transition in prostate cancer.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MIST) (Grant No.: NRF-2020R1A2C2005690) and by a 2022 Yeungnam University Research Grant.

References

  1. Araki, S., Omori, Y., Lyn, D., Singh, R. K., Meinbach, D. M., Sandman, Y., Lokeshwar, V. B. and Lokeshwar, B. L. (2007) Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 67, 6854-6862. https://doi.org/10.1158/0008-5472.CAN-07-1162
  2. Berckmans, R. J., Nieuwland, R., Boing, A. N., Romijn, F. P., Hack, C. E. and Sturk, A. (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb. Haemost. 85, 639-649. https://doi.org/10.1055/s-0037-1615646
  3. Chang, M., Patel, V., Gwede, M., Morgado, M., Tomasevich, K., Fong, E., Farach-Carson, M. and Delk, N. A. (2014) IL-1β induces p62/SQSTM1 and represses androgen receptor expression in prostate cancer cells. J. Cell. Biochem. 115, 2188-2197. https://doi.org/10.1002/jcb.24897
  4. Culig, Z., Bartsch, G. and Hobisch, A. (2002) Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth. Mol. Cell. Endocrinol. 197, 231-238. https://doi.org/10.1016/S0303-7207(02)00263-0
  5. Culig, Z., Steiner, H., Bartsch, G. and Hobisch, A. (2005) Mechanisms of endocrine therapy-responsive and-unresponsive prostate tumours. Endocr. Relat. Cancer 12, 229-244. https://doi.org/10.1677/erc.1.00775a
  6. Dahal, S., Chaudhary, P. and Kim, J.-A. (2022) Induction of promyelocytic leukemia zinc finger protein by miR-200c-3p restores sensitivity to anti-androgen therapy in androgen-refractory prostate cancer and inhibits the cancer progression via downregulation of integrin α3β4. doi: 10.21203/rs.3.rs-2171149/v1 [Preprint].
  7. De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C. G., Nakai, Y., Isaacs, W. B. and Nelson, W. G. (2007) Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256-269. https://doi.org/10.1038/nrc2090
  8. Denis, M. M., Tolley, N. D., Bunting, M., Schwertz, H., Jiang, H., Lindemann, S., Yost, C. C., Rubner, F. J., Albertine, K. H. and Swoboda, K. J. (2005) Escaping the nuclear confines: signal-dependent premRNA splicing in anucleate platelets. Cell 122, 379-391. https://doi.org/10.1016/j.cell.2005.06.015
  9. Feng, W., Xue, T., Huang, S., Shi, Q., Tang, C., Cui, G., Yang, G., Gong, H. and Guo, H. (2018) HIF-1α promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8-NF-κB axis. Cell. Mol. Biol. Lett. 23, 26.
  10. Germano, G., Allavena, P. and Mantovani, A. (2008) Cytokines as a key component of cancer-related inflammation. Cytokine 43, 374-379. https://doi.org/10.1016/j.cyto.2008.07.014
  11. Helley, D., Banu, E., Bouziane, A., Banu, A., Scotte, F., Fischer, A.-M. and Oudard, S. (2009) Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy. Eur. Urol. 56, 479-485. https://doi.org/10.1016/j.eururo.2008.06.038
  12. Hertzer, K. M., Donald, G. W. and Hines, O. J. (2013) CXCR2: a target for pancreatic cancer treatment? Expert Opin. Ther. Targets 17, 667-680. https://doi.org/10.1517/14728222.2013.772137
  13. Holmes, W. E., Lee, J., Kuang, W.-J., Rice, G. C. and Wood, W. I. (1991) Structure and functional expression of a human interleukin-8 receptor. Science 253, 1278-1280. https://doi.org/10.1126/science.1840701
  14. Horstman, L. L. and Ahn, Y. S. (1999) Platelet microparticles: a wide-angle perspective. Crit. Rev. Oncol. Hemat. 30, 111-142. https://doi.org/10.1016/S1040-8428(98)00044-4
  15. Hwang, W. L., Yang, M. H., Tsai, M. L., Lan, H. Y., Su, S. H., Chang, S. C., Teng, H. W., Yang, S. H., Lan, Y. T. and Chiou, S. H. (2011) SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology 141, 279-291.E5. https://doi.org/10.1053/j.gastro.2011.04.008
  16. Jamieson, T., Clarke, M., Steele, C. W., Samuel, M. S., Neumann, J., Jung, A., Huels, D., Olson, M. F., Das, S. and Nibbs, R. J. (2012) Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J. Clin. Invest. 122, 3127-3144. https://doi.org/10.1172/JCI61067
  17. Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Curtis, L., Machalinski, B., Ratajczak, J. and Ratajczak, M. Z. (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 113, 752-760. https://doi.org/10.1002/ijc.20657
  18. Joop, K., Berckmans, R. J., Nieuwland, R., Berkhout, J., Romijn, F. P., Hack, C. E. and Sturk, A. (2001) Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb. Haemostasis 85, 810-820. https://doi.org/10.1055/s-0037-1615753
  19. Kirby, M., Hirst, C. and Crawford, E. (2011) Characterising the castration-resistant prostate cancer population: a systematic review. Int. J. Clin. Pract. 65, 1180-1192. https://doi.org/10.1111/j.1742-1241.2011.02799.x
  20. Labelle, M., Begum, S. and Hynes, R. O. (2014) Platelets guide the formation of early metastatic niches. Proc. Natl. Acad. Sci. U. S. A. 111, E3053-E3061. https://doi.org/10.1073/pnas.1411082111
  21. Labrecque, M. P., Coleman, I. M., Brown, L. G., True, L. D., Kollath, L., Lakely, B., Nguyen, H. M., Yang, Y. C., da Costa, R. M. G. and Kaipainen, A. (2019) Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J. Clin. Invest. 129, 4492-4505. https://doi.org/10.1172/jci128212
  22. Long, X., Ye, Y., Zhang, L., Liu, P., Yu, W., Wei, F., Ren, X. and Yu, J. (2016) IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways. Int. J. Oncol. 48, 5-12. https://doi.org/10.3892/ijo.2015.3234
  23. Lopez-Bujanda, Z. A., Haffner, M. C., Chaimowitz, M. G., Chowdhury, N., Venturini, N. J., Patel, R. A., Obradovic, A., Hansen, C. S., Jackow, J. and Maynard, J. P. (2021) Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Nat. Cancer 2, 803-818. https://doi.org/10.1038/s43018-021-00227-3
  24. Maynard, J. P., Ertunc, O., Kulac, I., Valle, B.-D., Javier, A., De Marzo, A. M. and Sfanos, K. S. (2020) IL8 expression is associated with prostate cancer aggressiveness and androgen receptor loss in primary and metastatic prostate cancer. Mol. Cancer Res. 18, 153-165. https://doi.org/10.1158/1541-7786.mcr-19-0595
  25. Mezouar, S., Mege, D., Darbousset, R., Farge, D., Debourdeau, P., Dignat-George, F., Panicot-Dubois, L. and Dubois, C. (2014) Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin. Oncol. 41, 346-358. https://doi.org/10.1053/j.seminoncol.2014.04.010
  26. Murphy, P. M. and Tiffany, H. L. (1991) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253, 1280-1283. https://doi.org/10.1126/science.1891716
  27. Nierodzik, M. L. and Karpatkin, S. (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10, 355-362. https://doi.org/10.1016/j.ccr.2006.10.002
  28. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. and Ratajczak, M. (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487-1495. https://doi.org/10.1038/sj.leu.2404296
  29. Roebuck, K. A. (1999) Regulation of interleukin-8 gene expression. J. Interferon Cytokine Res. 19, 429-438. https://doi.org/10.1089/107999099313866
  30. Saraon, P., Drabovich, A. P., Jarvi, K. A. and Diamandis, E. P. (2014) Mechanisms of androgen-independent prostate cancer. eJIFCC 25, 42-54.
  31. Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G. and De Marzo, A. M. (2018) The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 15, 11-24. https://doi.org/10.1038/nrurol.2017.167
  32. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660
  33. Turley, S. J., Cremasco, V. and Astarita, J. L. (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669-682. https://doi.org/10.1038/nri3902
  34. Vandercappellen, J., Van Damme, J. and Struyf, S. (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett. 267, 226-244. https://doi.org/10.1016/j.canlet.2008.04.050
  35. Weyrich, A., Lindemann, S. and Zimmerman, G. (2003) The evolving role of platelets in inflammation. J. Thromb. Haemost. 1, 1897-1905. https://doi.org/10.1046/j.1538-7836.2003.00304.x
  36. Xie, K. (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 12, 375-391. https://doi.org/10.1016/S1359-6101(01)00016-8