• Title/Summary/Keyword: Human DNA

Search Result 2,852, Processing Time 0.031 seconds

The Anticancer Mechanisms of Taxol-Diethylenetriamine pentaacetate Conjugate in HT29 Human Colorectal Cancer cells

  • Lee, Na-Kyung;Kim, Hyun-Jeong;Yang, Seung-Ju;Kim, Yoon-Suk;Choi, Hyun-Il;Shim, Moon-Jeong;Awh, Ok-Doo;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.237-243
    • /
    • 2001
  • Taxol, a natural product extracted from the Taxus brevifolia, is known to have significant anti-tumor activities against many common cancers, including ovarian and breast cancers. Despite the pronounced anti-tumor activity of this compound, its poor solubility in aqueous solutions hampers its clinical applications. We studied the anticancer mechanisms of the water-soluble taxol diethylenetriamine pentaacetate (DTPA) used for radiolabeling, and compared it to that of taxol. In vitro cytotoxicities of taxol and taxol-DTPA conjugate were tested in HT29 human colorectal cancer cells by the MTT method. As the result, the $IC_{50}$ value of the taxol-DTPA conjugate was about three fold higher than that of taxol. When analyzed by an agarose gel electrophoresis, the DNA ladders became evident after the incubation of cells with the taxol-DTPA conjugate for 24 h. We also found morphological changes of the cells undergoing apoptosis with electron microscopy Next, we examined the signal pathway of taxol-DTPA conjugate-induced apoptosis in HT29 cells. The activation of extracellular signal-regulated protein kinase (ERK1/2) occurred at 10, 30, 60 and 120 min after 200 nM taxol-DTPA conjugate treatment. The pretreatment of the MEK inhibitor (PD98059) completely blocked the taxol-DTPA conjugate-induced ERK1/2 activation. The activated ERK1/2 translocated into the nucleus at the same time and phosphorylated its transcriptional factor, c-Jun. These results suggest that the taxol-DTPA conjugate has an apoptotic activity in HT29 cells, and that its proapoptic activity might be related with the signal transduction via ERK1/2 and c-Jun similar to that of taxol.

  • PDF

Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest

  • Lee, Jintak;Chun, Hyun-Woo;Pham, Thu-Huyen;Yoon, Jae-Hwan;Lee, Jiyon;Choi, Myoung-Kwon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anti-cancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using α-tubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.

Specific Interaction of Rat Vanilloid Receptor, TRPV1 with Rab11-FIP3 (Rat 바닐로이드 수용체 TRPV1과 Rab11-FIP3의 특이적 결합)

  • Lee, Soon-Youl;Kim, Mi-Ran
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.312-317
    • /
    • 2011
  • Vanilloid receptor TRPV1 (known as capsaicin channel, transient receptor potential vanilloid 1) is known to be a key protein in the pain signal transduction. However, the proteins controlling the activity of the channel are not much known yet. Recently mouse Rab11-FIP3 (Rab11-family interaction protein 3) was found and reported to interact with rat TRPV1. Rab11 has been shown to play a key role in a variety of cellular processes including plasma membrane recycling, phagocytosis, and transport of secretory proteins from the trans-Golgi network. Therefore, Rab11-FIP3 was proposed to be involved in the membrane trafficking of TRPV1. In this study, the unreported rat Rab11-FIP3 was yet cloned in order to show the specific interaction of the TRPV1 and Rab11-FIP3 in the same species of rat and to examine the membrane trafficking of TRPV1. The result showed that rat Rab11-FIP3 is expected to have 489 amino acids and showed 80% identity with that of human and over 90% identity with that of mouse. Rab11-FIP3 was found to be expressed in heart, brain, kidney, testis using northern and western blot analyses. We also found that rat Rab11-FIP3 was colocalized with rat TRPV1 but not with TRPV2 of same family in the rat brain by using immunohistochemistry showing that two proteins interact specifically, suggesting the role of Rab11-FIP3 in the membrane trafficking.

STUDY ON MUTATION OF RAS GENE IN DMBA INDUCED CARCINOMA OF HAMSTER BUCCAL POUCH (DMBA로 유도된 햄스터 협낭암종에서 ras 유전자 변이에 관한 연구)

  • Song, Sun-Chul;Kim, Kyung-Wook;Lee, Jae-Hoon;Kim, Chang-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.6
    • /
    • pp.581-590
    • /
    • 2000
  • Alterations in the cellular genome affecting the expression or function of genes controlling cell growth and differentiation are considered to be the main cause of cancer. Over 30 oncogenes can be activated by insertional mutagenesis, single point mutations, chromosomal translocations and gene amplification. The ras oncogenes have been detected in $15{\sim}20%$ of human tumors that include some of the most common forms of human neoplasia and are known to acquire their transforming properties by single point mutations in two domains of their coding sequences, most commonly in codons 12 and 61. The ras gene family consists of three functional genes, N-ras, K-ras and H-ras which encode highly similar proteins of 188 or 189 amino acid residues generically known as P21. ras proteins have been shown to bind GTP and GTP, and possess intrinsic GTPase activity. Experimental study was performed to observe the mutational change of the ras gene family and apply the results to the clinical activity. 36 Golden Syrian Hamster each weighing $60{\sim}80g$ were used and painted with 0.5% DMBA by 3 times weekly on the right buccal cheek(experimental side) for 6, 8, 10, 12, 14 and 16 weeks. Left buccal cheek (control side) was treated with mineral oil as the same manner of the right side. The hamsters were sacrificed on the 6, 8, 10, 12, 14 & 16 weeks. Normal and tumor tissues from paraffin block were completely dissected by microdissection and DNA from both tissue were isolated by proteinase K/phenol/chloroform extraction. Segments of the K-ras and H-ras gene were amplified by PCR using the oligonucleotide primers corresponding to the homologous region (codon 12 and 61) of the hamster gene, and then confirmational change of ras genes was observed by SSCP and autosequencing analysis. The results were as follows : 1. Malignant lesion could be found in the experimental side from the experimental six weeks. 2. One hamster among six showed point mutation of the H-ras codon 12($G{\rightarrow}A$ transition) at the experimental 10 and 14 weeks. 3. One of six at 6 weeks, two of six at 8 weeks and one of six at 12 weeks revealed the confirmational change of the H-ras codon 61($A{\rightarrow}T$ transversion). 4. The incidence of point mutation of H-ras codon 12 and 61 were 5.5%(2 of 36) and 11%(4 of 36) respectively. 5. Point mutation of the K-ras could not be seen during the whole experimental period. Form the above results, these findings strongly support the concept that H-ras oncogenes may have the influence of the DMBA induced carcinoma of hamster buccal pouch.

  • PDF

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF

Expression of Periostin and S100A2 - S100A4 - Calcium Binding Proteins mRNA in Human Gingival Fibroblasts and Periodontal Ligament Fibroblasts (사람 치은섬유세포와 치주인대섬유모세포에서 Periostin과 S100A2-, S100A4-칼슘결합단백 mRNA의 발현)

  • Kim, Byung-Ock;Han, Kyung-Yoon;Choi, Young-Sun;Kim, Se-Hoon;Park, Byung-Gi;Kim, Heung-Joong;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.109-122
    • /
    • 2001
  • Gingival fibroblasts(GF) and periodontal ligament fibroblasts(PDLF) are the major cellular components of periodontal soft connective tissues, but the precise molecular biological differences between these cells are not yet known. In the present study, we investigated the expression of S100A4, S100A2 calcium-binding protein and osteoblast-specific factor 2(OSF-2, Periostin) mRNA in GF and PDLF in vitro through the process of reverse transcription-polymerase chain reaction(RT-PCR) and Northern blot analysis in each. Human GF and PDLF were isolated from the gingival connective tissue and the middle third of freshly extracted healthy third molars. They were cultured in Dulbecco's Modified Eagle Medium(DMEM) containing 10% fetal bovine serum and cells in the third passage were used in the experiments. After extracting total RNA from cultured cells, RT-PCR and Northern analysis were performed using S100A4-, S100A2- and Periostin-specific oligonucleotide primers and subcloned cDNA probes in each. In PT-PCR and Northern analysis, the expression of S100A4 and Periostin mRNA in GF was slightly detectable. Interestingly, the expression of S100A4 and periostin mRNA in PDLF was much higher than that in GF. On the other hand, S100A2 mPNA was highly expressed in both GF and PDLF. Since there was a marked difference of S100A4 and Periostin expression between GF and PDLF in vitro, these data suggest that S100A4 and periostin could be used as a useful marker for distinguishing cultured gingival fibroblasts and periodontal ligament cells.

  • PDF

SUPPRESSION OF PHORBOL ESTER-INDUCED EXPRESSION OF CYCLLOOXYGENASE-2 AND INDUCIBLE NITRIC OXIDE SYNTHASE BY SELCTED CHEMOPREVENTIVE PHYTOCHEMICALS VIA DOWN-REGULATION OF NF-$\textsc{k}$B

  • Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05b
    • /
    • pp.88.2-98
    • /
    • 2002
  • A wide arry of naturally occurring substances particularly those present in dietary and medicinal plants, have been reported to possess substantial cancer chemopreventive properties. Certain phytochemicals retain strong antioxidative and anti-inflammatory properties which appear to contribute to their chemopreventive or chemoprotective activities. Inducible cyclooxygenase(COX-2) and nitric oxide synthase (iNOS) are important enzymes that mediate inflammatory processes. There is some evidence that expression of both COX-2 and iNOS is co-regulated by the eukaryotic transcription factor NF-$textsc{k}$B. Increased expression of COX-2 and/or iNOS has been associated with pathophysiology of certain types of human cancers as well as inflammatory diseases. Since inflammation is closely linked to tumor promotion, substances with potent anti-inflammatory activies are anticipated to exert chemopreventive effects on carcinogenesis, particularly in the promotion stage. An example is curcumin, a yellow pigment of turmeric (Curcuma longa L., Zingiberaceae), that strongly occurring diaryl heptanoids structurally related to curcumin have substantial anti-tumor promotional activities in two-stage mouse skin carcinogenesis. Thus, yakuchinone A [1-(4'-hydroxy-3'-methoxyphenyl)-7-phenyl-3heptanone] and yakuchinone B [1-(4'-hydroxy-3'methoxyphenyl)-7-phenylhept-1-en-3-one] present in Alpinia oxyphylla Miquel (Zingiberacease) attenuate phorbol ester-induced inflammation and papilloma formation in female ICR mice. These diarylheptanoids also suppressed phorbol ester-induced activation of epdermal ornithine decarboxylase and its mRNA expression when applied onto shaven backs of mice. Yakuchinone A and B as well as curcumin inhibited phorbol ester-induced expression of COX-2 and iNOS and their mRNA in mouse skin via inactivation of NF-$textsc{k}$B. Capsaicin, a major pungent ingredient of red pepper also attenuated phorbol ester-induced NF-$textsc{k}$B activation. Similar suppression of COX-2 and iNOS and down-regulation of NF-$textsc{k}$B activation for its DNA binding were observed with the ginsenosied Rg3 and the ethanol extract of Artemisia asiatica. We have also found that certain anti-inflammatory phytochemicals exert inhibitory effects on phorbol ester-induced COX-2 expression and NF-$textsc{k}$B activation in immortalized human breast epithelial (MCF-10A) cells in culture. One of the plausible mechanisms undelying inhibition by aforementioned phytochemicals of phorbol ester-induced NF-$textsc{k}$B activation involves interference with degragation of the inhibitory unit, I$textsc{k}$Ba, which blocks subsequent nuclear translocation of the functionally active p65 subunit of NF-$textsc{k}$B. the activation of epidermal NF-$textsc{k}$B by phorbol ester and subsequent induction of COX-2 hence appear to play an important role in intracellular signaling pathwasy leading to tumor promotion and targeted inhibition of NF-$textsc{k}$B may provide a new promising cancer chemopreventive strategy.

  • PDF

Molecular Cloning and Characterization of a P38-Like Mitogen-Activated Protein Kinase from Echinococcus granulosus

  • Lu, Guodong;Li, Jing;Zhang, Chuanshan;Li, Liang;Bi, Xiaojuan;Li, Chaowang;Fan, Jinliang;Lu, Xiaomei;Vuitton, Dominique A.;Wen, Hao;Lin, Renyong
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.759-768
    • /
    • 2016
  • Cystic echinococcosis (CE) treatment urgently requires a novel drug. The p38 mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases, but still have to be characterized in Echinococcus granulosus. We identified a 1,107 bp cDNA encoding a 368 amino acid MAPK protein (Egp38) in E. granulosus. Egp38 exhibits 2 distinguishing features of p38-like kinases: a highly conserved T-X-Y motif and an activation loop segment. Structural homology modeling indicated a conserved structure among Egp38, EmMPK2, and H. sapiens $p38{\alpha}$, implying a common binding mechanism for the ligand domain and downstream signal transduction processing similar to that described for $p38{\alpha}$. Egp38 and its phosphorylated form are expressed in the E. granulosus larval stages vesicle and protoscolices during intermediate host infection of an intermediate host. Treatment of in vitro cultivated protoscolices with the p38-MAPK inhibitor ML3403 effectively suppressed Egp38 activity and led to significant protoscolices death within 5 days. Treatment of in vitro-cultivated protoscolices with $TGF-{\beta}1$ effectively induced Egp38 phosphorylation. In summary, the MAPK, Egp38, was identified in E. granulosus, as an anti-CE drug target and participates in the interplay between the host and E. granulosus via human $TGF-{\beta}1$.

Acacetin-induced Apoptosis of Human Breast Cancer MCF-7 Cells Involves Caspase Cascade, Mitochondria-mediated Death Signaling and SAPK/JNK1/2-c-Jun Activation

  • Shim, Hye-Young;Park, Jong-Hwa;Paik, Hyun-Dong;Nah, Seung-Yeol;Kim, Darrick S.H.L.;Han, Ye Sun
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.95-104
    • /
    • 2007
  • The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition ($IC_{50}$) of MCF-7 cells at $26.4{\pm}0.7{\mu}M$ over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with $100{\mu}M$ acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun $NH_4$-terminal kinase 1/2 (SAPK/JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.

Common Docking Domain Mutation E322K of the ERK2 Gene is Infrequent in Oral Squamous Cell Carcinomas

  • Valiathan, Gopalakrishnan Mohan;Thenumgal, Siji Jacob;Jayaraman, Bhaskar;Palaniyandi, Arunmozhi;Ramkumar, Hemalatha;Jayakumar, Keerthivasan;Bhaskaran, Sajeev;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6155-6157
    • /
    • 2012
  • Background: Mutations in the MAPK (Mitogen Activated Protein Kinase) signaling pathway - EGFR/Ras/RAF/MEK have been associated with the development of several carcinomas. ERK2, a downstream target of the MAPK pathway and a founding member of the MAPK family is activated by cellular signals emanating at the cell membrane. Activated ERK2 translocates into the nucleus to transactivate genes that promote cell proliferation. MKP - a dual specific phosphatase - interacts with activated ERK2 via the common docking (CD) domain of the later to inactivate (dephosphorylate) and effectively terminate further cell proliferation. A constitutively active form of ERK2 carrying a single point mutation - E322K in its CD domain, was earlier reported by our laboratory. In the present study, we investigated the prevalence of this CD domain E322K mutation in 88 well differentiated OSCC tissue samples. Materials and Method: Genomic DNA specimens isolated from 88 oral squamous cell carcinoma tissue samples were amplified with primers flanking the CD domain of the ERK2 gene. Subsequently, PCR amplicons were gel purified and subjected to direct sequencing to screen for mutations. Results: Direct sequencing of eighty eight OSCC samples identified an E322K CD domain mutation in only one (1.1%) OSCC sample. Conclusions: Our result indicates that mutation in the CD domain of ERK2 is rare in OSCC patients, which suggests the role of genetic alterations in other mitogenic genes in the development of carcinoma in the rest of the patients. Nevertheless, the finding is clinically significant, as the relatively rare prevalence of the E322K mutation in OSCC suggests that ERK2, being a common end point signal in the multi-hierarchical mitogen activated signaling pathway may be explored as a viable drug target in the treatment of OSCC.