Acacetin-induced Apoptosis of Human Breast Cancer MCF-7 Cells Involves Caspase Cascade, Mitochondria-mediated Death Signaling and SAPK/JNK1/2-c-Jun Activation

  • Shim, Hye-Young (Department of Advanced Technology Fusion and Bio/Molecular Informatics Center, Konkuk University) ;
  • Park, Jong-Hwa (Department of Advanced Technology Fusion and Bio/Molecular Informatics Center, Konkuk University) ;
  • Paik, Hyun-Dong (Division of Animal Life Science and Bio/Molecular Informatics Center, Konkuk University) ;
  • Nah, Seung-Yeol (Department of Physiology, Collage of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Darrick S.H.L. (CurXceL Corporation, The Business and Technology Center) ;
  • Han, Ye Sun (Department of Advanced Technology Fusion and Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2007.02.07
  • Accepted : 2007.05.02
  • Published : 2007.08.31

Abstract

The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition ($IC_{50}$) of MCF-7 cells at $26.4{\pm}0.7{\mu}M$ over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with $100{\mu}M$ acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun $NH_4$-terminal kinase 1/2 (SAPK/JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Korean Ministry of Science and Technology

References

  1. Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival 1. Science 281, 1322-1326 https://doi.org/10.1126/science.281.5381.1322
  2. Banerjee, S., Zhang, Y., Ali, S., Bhuiyan, M., Wang, Z., et al. (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res. 65, 9064-9072 https://doi.org/10.1158/0008-5472.CAN-05-1330
  3. Boege, F., Staub, T., Kehr, A., Boesenberg, C., Christiansen, K., et al. (1996) Selected novel flavonoids inhibit the DNA topoisomerase I. J. Biol. Chem. 271, 2262-2270 https://doi.org/10.1074/jbc.271.4.2262
  4. Brown, K. (2002) Breast cancer chemoprevention: risk-benefit effects of the antioestrogen tamoxifen. Expert Opin. Drug Saf. 1, 253-267 https://doi.org/10.1517/14740338.1.3.253
  5. Chan, K. and Morris, G. J. (2006) Chemoprevention of breast cancer for women at high risk. Semin. Oncol. 33, 642-646
  6. Chen, Y. R., Meyer, C. F., and Tan, T. H. (1996) Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation- induced apoptosis. J. Biol. Chem. 271, 631-634 https://doi.org/10.1074/jbc.271.2.631
  7. Cholbi, M. R., Paya, M., and Alcaraz, M. J. (1991) Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia 47, 195-199 https://doi.org/10.1007/BF02041265
  8. Corbiere, C., Liagre, B., Terro, F., and Beneytout, J. L. (2004) Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res. 14, 188-196 https://doi.org/10.1038/sj.cr.7290219
  9. Cryns, V. and Yuan, J. (1998) Proteases to die for. Genes Dev. 12, 1551-1570 https://doi.org/10.1101/gad.12.11.1551
  10. Ding, W. X., Shen, H. M., and Ong, C. N. (2000) Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes. Hepatology 32, 547-555 https://doi.org/10.1053/jhep.2000.16183
  11. Doostdar, H., Burke, M. D., and Mayer, R. T. (2000) Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYPIA and CYP1B1. Toxicology 144, 31-38 https://doi.org/10.1016/S0300-483X(99)00215-2
  12. Duthie, S. J. and Dobson, V. L. (1999) Dietary flavonoids protect human colonocyte DNA from oxidative attract in vivo. Eur. J. Nutr. 38, 28-34 https://doi.org/10.1007/s003940050043
  13. Fan, Y., Chen, H., Qiao, B., Luo, L., Ma, H., et al. (2007) Opposing effects of ERK and p38 MAP kinases on HeLa cell apoptosis induced by dipyrithione. Mol. Cells 23, 30-38
  14. Gerritsen, M. E. (1998) Inhibitors of cytokine induced gene expression. Adv. Exp. Med. Biol. 439, 183-190
  15. Gianinazzi, C., Grandgirard, D., Imboden, H., Egger, L., Meli, D. N., et al. (2003) Caspase-3 mediates hippocampal apoptosis in pneumococcal meningitis. Acta Neuropathol. 105, 499-507
  16. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312 https://doi.org/10.1126/science.281.5381.1309
  17. Grivicich, I., Regner, A., da Rocha, A. B., Grass, L. B., Alves, P. A., et al. (2005) Irinotecan/5-fluorouracil combination induces alterations in mitochondrial membrane potential and caspases on colon cancer cell lines. Oncol. Res. 15, 385-392 https://doi.org/10.3727/096504005776449680
  18. Hsu, Y. L., Kuo, P. L., Liu, C. F., and Lin, C. C. (2004) Acacetin- induced cell cycle arrest and apoptosis in human nonsmall cell lung cancer A549 cells. Cancer Lett. 212, 53-60 https://doi.org/10.1016/j.canlet.2004.02.019
  19. Hu, C. A., Tang, C. A., and Wang, J. (2001) Caspase activation in response to cytotoxic Rena catesbeiana ribonuclease in MCF-7 cells. FEBS Lett. 503, 65-68 https://doi.org/10.1016/S0014-5793(01)02691-6
  20. Jacobson, M. D. and Raff, M. C. (1995) Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374, 814-816 https://doi.org/10.1038/374814a0
  21. Jacobson, M. D., Burne, J. F., and Raff, M. C. (1994) Mechanisms of programmed cell death and Bcl-2 protection. Biochem. Soc. Trans. 22, 600-602 https://doi.org/10.1042/bst0220600
  22. Janicke, R. U., Sprengart, M. L., Wati, M. R., and Porter, A. G. (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357-9360 https://doi.org/10.1074/jbc.273.16.9357
  23. Jenal, A., Thomas, A., Murry, T., and Thun, M. (2002) Cancer stastics, 2002. CA Cancer J. Clin. 52, 23-37 https://doi.org/10.3322/canjclin.52.1.23
  24. Johnson, G. L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912 https://doi.org/10.1126/science.1072682
  25. Johnston, S. R. (1997) Acquired tamoxifen resistance in human breast cancer--potential mechanisms and clinical implications. Anticancer Drugs 8, 911-930 https://doi.org/10.1097/00001813-199711000-00002
  26. Kallio, A., Zheng, A., Dahllund, J., Heiskanen, K. M., and Harkonen, P. (2005) Role of mitochondria in tamoxifen-induced rapid death of MCF-7 breast cancer cells. Apoptosis 10, 1395-1410
  27. Kanno, S., Tomizawa, A., Ohtake, T., Koiwai, K., Ujibe, M., et al. (2006) Naringenin-induced apoptosis via activation of NF-kappaB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol Lett. 166, 131-139 https://doi.org/10.1016/j.toxlet.2006.06.005
  28. Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., et al. (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491-1494
  29. Kraft, C., Jenett-Siems, K., Siems, K., Jakupovic, J., Mavi, S., et al. (2003) In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother. Res. 17, 123-128 https://doi.org/10.1002/ptr.1066
  30. Lu, G., Liao, J., Yang, G., Reuhl, K. R., Hao, X., et al. (2006) Inhibition of adenoma progression to adenocarcinoma in a 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine. Cancer Res. 66, 1494-1501
  31. Lupu, R., Cardillo, M., Cho, C., Harris, L., Hijazi, M., et al. (1996) The significance of heregulin in breast cancer tumor progression and drug resistance. Breast Cancer Res. Treat. 38, 57-66 https://doi.org/10.1007/BF01803784
  32. Matsura, T., Kai, M., Fujii, Y., Ito, H., and Yamada, K. (1999) Hydrogen peroxide-induced apoptosis in HL-60 cells requires caspase-3 activation. Free Radic. Res. 30, 73-83 https://doi.org/10.1080/10715769900300081
  33. Middleton, E., Kandaswami, C., and Theoharides, T. C. (2000) The effect of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52, 673-751
  34. Minden, A. and Karin, M. (1997) Regulation and function of the JNK subgroup of MAP kinases. Biochim. Biophy. Acta 1333, F85-F105
  35. Mohammad, R. M., Banerjee, S., Li, Y., Aboukameel, A., Kucuk, O., et al. (2006) Cispain-induced antitumor activity is potentiated by the soy isoflavone genistein in BxPC-3 pancreatic tumor xenografts. Cancer 106, 1260-1268 https://doi.org/10.1002/cncr.21731
  36. Pan, M. H., Lai, C. S., Hsu, P. C., and Wang, Y. J. (2005) Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species. J. Agric. Food Chem. 53, 620-630 https://doi.org/10.1021/jf048430m
  37. Pan, M. H., Lai, C. S., Wang, Y. J., and Ho, C. T. (2006) Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem. Pharmacol. 72, 1293-303 https://doi.org/10.1016/j.bcp.2006.07.039
  38. Plaumann, B., Fritsche, M., Rimpler, H., Brandner, G., and Hess, R. D. (1996) flavonoids activate wild-type p53. Oncogene 13, 1605-1614
  39. Raingeaud, J., Gupta, S., Rogers, J. S., Dicken, M., Han, J., et al. (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 7420-7426
  40. Rao, L. and White, E. (1997) Bcl-2 and the ICE family of apoptotic regulators: making connection. Curr. Opin. Genet. Dev. 7, 52-58 https://doi.org/10.1016/S0959-437X(97)80109-8
  41. Schrivastava, A., Tiwari, M., Sinha, R. A., Kumar, A., Balapure, A. K., et al. (2006) Molecular iodine induces caspaseindependent apoptosis in human breast carcinoma cells involving mitochondria-mediated pathway. J. Biol. Chem. 281, 19762-19771 https://doi.org/10.1074/jbc.M600746200
  42. Singh, R. P., Agrawal, P., Yim, D., Agarwal, C., and Agarwal, R. (2005) Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: structure-activity relationship with linarin and linarin acetate. Carcinogenesis 26, 845-54 https://doi.org/10.1093/carcin/bgi014
  43. Smith, L. L., Brown, K., Carthew, P., Lim, C. K., Martin, E. A., et al. (2000) Chemoprevention of breast cancer by tamoxifen: risks and opportunities. Crit. Rev. Toxicol. 30, 571-594 https://doi.org/10.1080/10408440008951120
  44. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446 https://doi.org/10.1038/17135
  45. Tsujimoto, Y. (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitichondria? Genes Cells 3, 697-707 https://doi.org/10.1046/j.1365-2443.1998.00223.x
  46. Twiddy, D., Cohen, G. M., MacFarlane, M., and Cain, K. (2006) Caspase 7 is directly activated by the -700 kDa apoptosome complex and is released as a stable XIAP-caspase 7-200 kDa complex. J. Biol. Chem. 281, 3876-3888 https://doi.org/10.1074/jbc.M507393200
  47. Yim, S. H., Kim, H. J., and Lee, I. S. (2003) A polyacetylene and flavonoids from Cirsium rhinoceros. Arch. Pharm. Res. 26, 128-131 https://doi.org/10.1007/BF02976657
  48. Zhang, K., Yang, E. B., Tang, W. Y., Wong, K. P., and Mack, P. (1997) Inhibition of glutathione reductase by plant polyphenols. Biochem. Pharmacol. 54, 1047-1053 https://doi.org/10.1016/S0006-2952(97)00315-8
  49. Zheng, T. S., Schlosser, S. F., Dao, T., Hingorani, R., Crispe, I. N., et al. (1998) Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc. Natl. Acad. Sci. USA 95, 13618-13623