• Title/Summary/Keyword: Hull structure design

Search Result 204, Processing Time 0.024 seconds

Hull Structure Design of a small scale Oceanographic Buoy (소형 해양조사 부이 Hull에 대한 설계)

  • Sun, NaNa;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.123-128
    • /
    • 2011
  • Hull design for a small scale Oceanographic buoy will be introduced in this paper. The hull structure design, the connection methods between all parts will be discussed. We mainly introduce a design process of this buoy hull. We use walls with two layers and a radial bone structure to support the body to increase overall intensity and capacity to resist impact.

An Algorithm for Generating' the Hull Structural Analysis Model Using the Seam Information of the Hull Structure at the Initial Design Stage

  • Roh, Myung-Il;Lee, Kyu-Yeul;Yoo, Seong-Jin
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.24-33
    • /
    • 2006
  • So far, the generation of a hull structural analysis model, that is, a finite element model of a hull structure, has been manually performed by a designer using design experience, and thus has required lots of time because of many constraints, the complexity, and the huge size of the hull structure. To make this task automatic, an algorithm for generating the hull structural analysis model is developed using the seam information of the hull structure. A generating system of the hull structural analysis model is implemented based on the developed algorithm. The applicability of the developed algorithm is demonstrated by applying it to the generation of the global and hold structural analysis models of a deadweight 300,000 ton VLCC (Very Large Crude oil Carrier). The results show that the developed algorithm can quickly generate these models at the initial design stage.

A Study on the Design and Strength Evaluation of the Pipe Support Structure and Hull Reinforcement (파이프 지지구조와 하부 보강의 설계와 강도 평가에 관한 연구)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.187-199
    • /
    • 2019
  • In the case of gas carriers and oil tankers, pipes are installed on the upper deck as a moving passage to load LPG, LNG, crude oil, etc. Pipes used for loading or unloading liquid cargo in cargo holds are connected to the hull through support structures. However, many cases of hull damage have been reported where the various equipment and support structures are installed on the upper deck. It is assumed that not only the structural discontinuity where the hull and the pipe support structure meet, but also action due to the pipe loads and the hull girder bending moment are simultaneously affected. This paper deals with the design and strength evaluation of the support structure of pipes and cables installed on the upper deck of commercial ships and offshore structures. For these supporting structures, design conditions and working loads were defined. The design procedure was established through the structure analysis on the method of determining the member dimensions. A series of finite element analysis was performed on the factors to be considered in the design and the effects were discussed. The accuracy and design periods of the strength evaluation was improved and reduced by application of the automation program in the finite element analysis. It is also expected that the design reliability of the shipyard is improved.

Development of an Hull Structural CAD System based on the Data Structure and Modeling Function for the Initial Design Stage (초기 설계를 위한 자료 구조 및 모델링 함수 기반의 선체 구조 CAD 시스템 개발)

  • Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.362-374
    • /
    • 2006
  • Currently, all design information of a hull structure is being first defined on 2D drawings not 3D CAD model at the initial ship design stage and then transferred to following design stages through the 2D drawings. This is caused by the past design practice, limitation on time, and lack of hull structural CAD systems supporting the initial design stage. As a result, the following design tasks such as the process planning and scheduling are being manually performed using the 2D drawings. For solving this problem, a data structure supporting the initial design stage is proposed and a prototype system is developed based on the data structure. The applicability of the system is demonstrated by applying it to various examples. The results show that the system can be effectively used for generating the 3D CAD model of the hull structure at the initial design stage.

Optimal Design of Submarine Pressure Hull Structures Using Genetic Algorithm (유전 알고리즘을 적용한 잠수함 압력선체 최적 구조설계)

  • Cho, Yoon Sik;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.378-386
    • /
    • 2017
  • In this paper, a method is presented for the optimal design of submarine pressure hull structures by taking advantage of genetic algorithm techniques. The objective functions and design constraints in the process of structural optimization are based on the ultimate limit states of hull structures. One of the benefits associated with the utilization of genetic algorithm is that the optimization process can be completed within short generations of design variables for the pressure hull structure model. Applied examples confirm that the proposed method is useful for the optimal design of submarine pressure hull structures. Details of the design procedure with applied examples are documented. The conclusions and insights obtained from the study are summarized.

Development of a Pipe Modeling System based on the Hull Structural Model Applying the Rapid Pipe Routing Method (쾌속 배관 라우팅 방법을 적용한 선체 구조 모델 기반의 배관 모델링 시스템 개발)

  • Roh, Myung-Il;Choi, Woo-Young;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.321-329
    • /
    • 2007
  • The present pipe modeling method requires detailed inputs from a designer to generate a pipe model, and thus it takes much time for the designer to perform such task. Moreover, the pipe model has no relation with the hull structure. Thus, it is time-consuming and requires much effort if design changes arise. In this study, a generating method that generates quickly many pipes using a pipe tray and a conversion method that converts automatically the pipes into objects related with the hull structure are proposed. A pipe modeling system based on the proposed methods is developed. The applicability of the developed system is demonstrated by applying it to the generation of the pipe model of a deadweight 300,000 ton VLCC(Very Large Crude oil Carrier). The results show that the developed system can quickly generate the pipe model in relation with the hull structure.

A Study on the Vibration of Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;황인하;이강수
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.81-88
    • /
    • 2000
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. Specially, the importance of the added mass is not necessary to say like the submerged vehicle, all of the hull body, is positioned in the water. This paper introduce two method to find natural frequency in consideration of fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze of the vibration characteristic of submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage data. Underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M model is meshed by shell and beam element. Also, considering of the inner hull weight, mass element is distributed in the direction of hull length. Numerical calculations are accomplished using the commercial B.E.M code. The characteristics of natural frequency(eigenvalues), mode shape(eigenvectors) and frequency-displacement response are analyzed. The results of this study will be used as the useful design data in preliminary anti-vibration design stage.

  • PDF

E/R Stringer Deck Strength Calculation of CSR Bulk Carrier (CSR Bulk Carrier의 E/R Stringer Deck 구조 강도 계산)

  • Choi, Sung-Bin;Kim, Dong-Keun;Kim, Kyoung-Rae
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.47-50
    • /
    • 2011
  • E/R bulkhead is watertight bulkhead between engine room and cargo hold. So, it must have sufficient strength about cargo load of aft hold. Especially, partial stringer deck between tank top and $2^{nd}$ deck of engine room must have sufficient strength because it has function of primary supporting member. Generally, cargo hold structure is verified through the direct calculation as finite element analysis of cargo hold, but engine room structure doesn't perform it. Therefore, we have performed finite element analysis of engine room stringer deck which considered cargo hold load. And then, it will be able to apply similar ship design.

  • PDF

A study on hull girder shear strength in bulk carriers for CSR and Harmonized CSR (CSR-BC와 Harmonized CSR-BC의 선체 전단 응력에 대한 비교 고찰)

  • Park, Jong Min;Lee, Kyu Ho;Lee, Sang Bok;Shin, Sung-Kwang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.46-49
    • /
    • 2015
  • Common Structural Rules (CSR) about bulk carriers and double-hull oil tankers of International Association of Classification Societies (IACS) has been applied to ships contracted for construction since April 2006. By unifying each society's rules, the difference of opinion in the between shipyard and ship owners, classification was reduced, and CSR has been evaluated by rules the safety structure more enhanced. However, The CSR about the bulk carriers and double hull oil tankers, important design content standards, such as the local scantling calculation, static/dynamic load case and corrosion margin and etc., are different. Therefore in order to combine the CSR, the Harmonized CSR for bulk carriers and double hull oil tankers (H-CSR) was issued on 1, January, 2014, and will be apply to ships contracted for construction after 1st July 2015. It is necessary to verify the H-CSR to optimize the structural arrangement because effective date is not far off. In this study, we compared the impact by rule change for the hull girder shear strength of bulk carriers between CSR and H-CSR in respect of the yielding and buckling strength.

  • PDF

The Optimum Design of Hinged Cross Bar for Container Vessels (Hinged Cross Bar 구조 최적 설계)

  • Kim, Myong-Kyu;Lee, Dong-Uk;Moon, Jung-Yong
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.29-32
    • /
    • 2008
  • Hinged cross bar which is fitted for buyer's special item in cell guide of container vessels has an advantage of efficiency on container loading. In this paper, the main focus is to confirm the structural adequacy of hinged cross bar supporting structure in cell guide under the considered loading condition for container vessel.

  • PDF