• Title/Summary/Keyword: Hsp15

Search Result 94, Processing Time 0.025 seconds

Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli

  • Lee, Yoo-Sup;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.172-184
    • /
    • 2012
  • The prokaryotic molecular chaperone Hsp33 achieves its holdase activity upon response to oxidative stress particularly at elevated temperature. Despite many structural studies of Hsp33, which were conducted mainly by X-ray crystallography, the actual structures of the Hsp33 in solution remains controversial. Thus, we have initiated NMR study of the reduced, inactive Hsp33 monomer and backbone NMR assignments were obtained in the present study. Based on a series of triple resonance spectra measured on a triply isotope-[$^2H/^{13}C/^{15}N$]-labeled protein, sequence-specific assignments of the backbone amide signals observed in the 2D-[$^1H/^{15}N$]TROSY spectrum could be completed up to more than 96%. However, even considering the small portion of non-assigned resonances due to the lack of sequential connectivity, we confirmed that the total number of observed signals was quite smaller than that expected from the number of amino acid residues in Hsp33. Thus, it is postulated that peculiar dynamic properties would be involved in the solution structure of the inactive Hsp33 monomer. We expect that the present assignment data would eventually provide the most fundamental and important data for the progressing studies on the 3-dimensional structure and molecular dynamics of Hsp33, which are critical for understanding its activation process.

Molecular Cloning and Expression Analysis of Red-spotted Grouper, Epinephelus akaara Hsp70 (수온변화에 따른 붉바리(Epinephelus akaara)의 heat shock protein (Hsp) 70 mRNA 발현)

  • Min, Byung Hwa;Hur, Jun Wook;Park, Hyung Jun
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.639-647
    • /
    • 2018
  • A new heat shock protein 70 was identified in red-spotted grouper (Epinephelus akaara) based on an expression analysis. The cDNA of red-spotted grouper Hsp70 (designated RgHsp70) was cloned by the rapid amplification of cDNA ends (RACE) techniques. The full-length of RgHsp70 cDNA was 2,152 bp, consisting of a 5'-terminal untranslated region (UTR) of 105 bp, a 3'-terminal UTR of 274 bp, and an open reading frame (ORF) of 1,773 bp that encode a polypeptide of 590 amino acids with a theoretical molecular weight of 64.9 kDa and an estimated isoelectric point of 5.2. Multiple alignment and phylogenetic analyses revealed that the RgHsp70 gene shares a high similarity with other Hsp70 fish genes. RgHsp70 contained all three classical Hsp70 family signatures. The results indicated the RgHsp70 is a member of the heat shock protein 70 family. RgHsp70 mRNA was predominately expressed in the liver, with reduced expression noted in the head-kidney tissues. The expression analysis of different water temperatures (21, 18, 15 and $12^{\circ}C$) for sampled livers revealed that expression gradually increased at $12^{\circ}C$ compared to $21^{\circ}C$. In this study, the effects of water temperature lowering on the physiological conditions were investigated, and the results revealed that novel RgHsp70 may be an important molecule involved in stress responses.

Triple isotope-[13C, 15N, 2H] labeling and NMR measurements of the inactive, reduced monomer form of Escherichia coli Hsp33

  • Lee, Yoo-Sup;Ko, Hyun-Suk;Ryu, Kyoung-Seok;Jeon, Young-Ho;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2010
  • Hsp33 is a molecular chaperone achieving a holdase activity upon response to a dual stress by heat and oxidation. Despite several crystal structures available, the activation process is not clearly understood, because the structure inactive Hsp33 as its reduced, zinc-bound, monomeric form has not been solved yet. Thus, we initiated structural investigation of the reduced Hsp33 monomer by NMR. In this study, to overcome the high molecular weight (33 kDa), the protein was triply isotope-[$^{13}C$, $^{15}N$, $^2H$]-labeled and its inactive, monomeric state was ensured. 2D-[$^1H$, $^{15}N$]-TROSY and a series of triple resonance spectra could be successfully obtained on a high-field (900 MHz) NMR machine with a cryoprobe. However, under all of the different conditions tested, the number of resonances observed was significantly less than that expected from the amino acid sequence. Thus, a possible contribution of dynamic conformational exchange leading to a line broadening is suggested that might be important for activation process of Hsp33.

Genomic Organization of Heat Shock Protein Genes of Silkworm Bombyx mori

  • Velu, Dhanikachalam;Ponnuvel, Kangayam M.;Qadri, Sayed M. Hussaini
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.123-130
    • /
    • 2007
  • The Hsp 20.8 and Hsp 90 cDNA sequence retrieved from NCBI database and consists of 764 bp and 2582 bp lengths respectively. The corresponding cDNA homologus sequences were BLAST searched in Bombyx mori genomic DNA database and two genomic contigs viz., BAAB01120347 and AADK01011786 showed maximum homology. In B. mori Hsp 20.8 and Hsp 90 is encoded by single gene without intron. Specific primers were used to amplify the Hsp 20.8 gene and Hsp 90 variable region from genomic DNA by using the PCR. Obtained products were 216 bp in Hsp 20.8 and 437 bp in Hsp 90. There was no variation found in the six silkworm races PCR products size of contrasting response to thermal tolerance. The comparison of the sequenced nucleotide variations through multiple sequence alignment analysis of Hsp 90 variable region products of three races not showed any differences respect to their thermotolerance and formed the clusters among the voltinism. The comparison of aminoacid sequences of B. mori Hsps with dipteran and other insect taxa revealed high percentage of identity growing with phylogenetic relatedness of species. The conserved domains of B. mori Hsps predicted, in which the Hsp 20.8 possesses ${\alpha}-crystallin$ domain and Hsp 90 holds HATPase and Hsp 90 domains.

The Expression of Hsp90 and Ferritin Genes under Thermal Stress in the Sea Cucumber (Apostichopus japonicas) (Apostichopus japonicas (Echinodermata; Holothuroidea)에서 온도 스트레스에 의한 Hsp90 및 Ferritin 유전자의 발현)

  • Kim, Chul Won;Jin, Young Guk;Kim, Tae Ik;Jeong, Dal Sang;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.433-440
    • /
    • 2015
  • The Apostichopus japonicus is an important species in some Asia countries including Korea, China and Japan. The purpose of the present study was to investigate the differential gene expression of heat shock protein90 (Hsp90) and ferritin as a biomarker for the thermal stress during water temperature rising in the sea cucumber, A. japonicus. The A. japonicus (1.4 g) was cultured in incubator of separate temperature ($15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$ and $30^{\circ}C$) for each 0, 3, 6, 12, 24, 48 hours. The mRNA expression levels of Hsp90 and ferritin were examined using RT-PCR assay. Results showed that, the expression of Hsp90 mRNA was not significantly changed at $15^{\circ}C$. The expression of Hsp90 mRNA was significantly increased at high temperature such as $20^{\circ}C$ and $25^{\circ}C$. Furthermore, Hsp90 mRNA was early increased at $25^{\circ}C$ than $20^{\circ}C$. The ferritin mRNA was similar expression pattern with Hsp90. But, Hsp90 mRNA was more sensitive than ferritin mRNA at high thermal stress. These results indicate that Hsp90 and ferritin mRNAs were involved in the temperature changes response and may be play an important role in mediating the thermal stress in A. japonicas.

The Inducible form of Heat Shock Protein 70 (Hsp70) is Expressed in the Rat Cerebellar Synapses in Normal Condition (흰쥐 소뇌 정상 연접에서 열충격단백질70(HSP70)의 표현)

  • Cho Sun-Jung;Jung Jae-Seob;Jin IngNyol;Jung Seung Hyun;Park In Sick;Moon Il Soo
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.607-612
    • /
    • 2005
  • Heat shock protein 70 (HSP70) is a multigene family composed of constitutively expressed members(Hsc70) and stress-inducible members (Hsp70). In the mammalian nervous system, a considerable amount of HSPs is also synthesized under normal conditions suggesting that they play an important role in the metabolism of unstressed cells. In this study we examined the expression of Hsp70 in the synapses of rat cerebellar neurons. Immunohistochemistry using specific antibodies revealed that both Hsp70 and Hsc70 are expressed in the cerebellar tissue, with strongest expression in Purkinje cells followed by granule cells. Neurons in deep cerebellar nuclei were also intensely stained by Hsp70 antibody. Immunocytochemical stainings of cultured cerebellar cells showed that Hsp70 is expressed in both Purkinje and granule cells. The expression was punctate in the soma and along dendritic trees, and the punctae were colocalized with those of PSD95, a postsynaptic marker. Immunoblotting also indicates that Hsp70 is associated with the postsynaptic density fraction. Taken together, our results indicate that the Hsp70 is expressed in cerebellar neurons in normal conditions, and that some are localized in the synapses.

Transforming growth factor-β gene promoter polymorphism : its association with renal involvement in Henoch-Schölein Purpura in childhood (소아 Henoch-Schölein purpura에서 전환성장인자-β 프로모터유전자의 유전학적 다형성과 신장침범의 관련성)

  • Lee, Seung Ho;Jee, Hwa Young;Kim, Hwang Min;Yeh, Byung Il
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.5
    • /
    • pp.523-527
    • /
    • 2008
  • Purpose : Several cytokines play important roles in the inflammatory process of Henoch-$Sch\ddot{o}lein$ Purpura (HSP). It is likely that transforming growth $factor-{\beta}$ ($TGF-{\beta}$) is involved in the pathogenesis of HSP. The purpose of this study is to investigate whether $TGF-{\beta}$ promoter polymorphism is associated with the renal involvement of childhood HSP. Methods : Thirty-four patients younger than 15 years, who had been diagnosed with HSP, as well as 27 controls, were examined. Patients and controls were genotyped for $TGF-{\beta}$ C-509T by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results : The T allelic frequencies in patients and controls showed no difference (45% vs. 48.8%). No allele or genotype differences between the group of HSP group and control group were observed. The frequencies of $TGF-{\beta}$ 509 genotypes TT, TC, and CC were no different between patients and controls (26% vs. 22%). The TT genotype of polymorphism of the $TGF-{\beta}$ C-509T gene had no relation to the susceptibility of children to HSP and renal involvement in HSP. Conclusion : $TGF-{\beta}$ T allele may not be related to the susceptibility of children to HSP. The TT genotype of polymorphism of the $TGF-{\beta}$ C 509T gene does not appear to have an influence on renal involvement in childhood HSP.

HspA and HtpG Enhance Thermotolerance in the Cyanobacterium, Microcystis aeruginosa NIES-298

  • Rhee, Jae-Sung;Ki, Jang-Seu;Kim, Bo-Mi;Hwang, Soon-Jin;Choi, Ik-Young;Lee, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.118-125
    • /
    • 2012
  • Heat shock proteins (Hsps) play a key role in the cellular defense response to diverse environmental stresses. Here, the role of Hsp genes in the acquisition of thermotolerance in the cyanobacterium Microcystis aeruginosa NIES-298 was investigated. Twelve Hsp-related genes were examined to observe their modulated expression patterns at different temperatures (10, 15, 25, and $35^{\circ}C$) over different exposure periods. HspA and HtpG transcripts showed an up-regulation of expression at low temperatures (10 and $15^{\circ}C$) and high temperature ($35^{\circ}C$), compared with the control ($25^{\circ}C$). To examine their effects upon thermotolerance, we purified recombinant HspA and HtpG proteins. During a thermotolerance study at $54^{\circ}C$, the HspA-transformed bacteria showed increased thermotolerance compared with the control. HtpG also played a role in the defense response to acute heat stress within 30 min. These findings provide a better understanding of cellular protection mechanisms against heat stress in cyanobacteria.

Expression and Accumulation of LMW HSPs under Various Heat Shock Conditions (다양한 열처리 조건에서 LMW HSPs의 발현 및 축적량 조사)

  • Kim, Ki-Yong;Jang, Yo-Soon;Lee, Byung-Hyun;Jo, Jinki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.4
    • /
    • pp.303-310
    • /
    • 1998
  • We studied expression patterns of thermotolerance gene (BcHSP17.6) in cabbages which was isolated from Chinese cabbage and we will attempt transformation of forage crops with the gene in order to increase thermotolerance of forage crops. Antiserum against a BcHSP17.6 protein was reacted with its antigen. With this antiserum, the accumulation of the 15- to 18-kD LMW HSPs under various heat shock (HS) conditions was quantified. The LMW HSPs began to be detectable at $35^{\circ}C$, and after 4 hours at $40^{\circ}C$ they were accumulated to a maximum level of 1.56 micrograms per 100 micrograms of total proteins in cabbage leaves and remained almost unchanged up to 24 hours after HS. Accumulation of the HSPs was reduced at temperatures higher than $40^{\circ}C$. We conclude that accumulation of these LMW HSPs are necessary for Chinese cabbages to survive at an otherwise lethal temperature.

  • PDF

Chaperon Effects of Campylobacter jejuni groEL Genes Products in Escherichia coli (Campylobacter jejuni의 groEL 유전자 산물의 대장균에서의 Chaperon효과)

  • Lim, Chae-Il;Kim, Chi-Kyung;Lee, Jae-Kil
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.47-52
    • /
    • 1994
  • The cells of Campylobacter jejuni heat-shocked at 48${\circ}C$ for 30 min synthesized the heat shock proteins of HSP90, HSP66 and HSP60. Those heat shock proteins were found to correspond to the heat shock proteins of HSP87, HSP66 (DnaK), and HSP58 (GroEL) of E. coli, respectively. By Southern blot analysis of the chromosomal DNAs of C. jejuni with groESL and dnaK genes of E. coli as DNA probes, the heat shock genes of C. jejuni which are homologous to the E. coli groESL and dnaK genes were found to exist in the chromosomal DNA. The genomic libraries of C. jejuni were constructed with the cosmid vector pWE15 and the groEL gene of C. jejuni were cloned in E. coli B178 groEL44 temperature senstive mutant. The hybrid plasmid (pLC1) was inserted with the DNA fragment (about 5.7kb in size) containing the groEL gene. E. coli groEL44 mutant cell transformed with the pLC1 could grow at 42${\circ}C$ by synthesizing the HSP60 of C. jejuni and regained the susceptibility to the ${\lambda}$ vir phage by expression of the groEL gene in the cloned cells. These indicated that the groEL products of C. jejuni had chaperon effects by synthesizing the heat shock proteins in the cloned cells of E. coli.

  • PDF