Genomic Organization of Heat Shock Protein Genes of Silkworm Bombyx mori

  • Published : 2007.12.31

Abstract

The Hsp 20.8 and Hsp 90 cDNA sequence retrieved from NCBI database and consists of 764 bp and 2582 bp lengths respectively. The corresponding cDNA homologus sequences were BLAST searched in Bombyx mori genomic DNA database and two genomic contigs viz., BAAB01120347 and AADK01011786 showed maximum homology. In B. mori Hsp 20.8 and Hsp 90 is encoded by single gene without intron. Specific primers were used to amplify the Hsp 20.8 gene and Hsp 90 variable region from genomic DNA by using the PCR. Obtained products were 216 bp in Hsp 20.8 and 437 bp in Hsp 90. There was no variation found in the six silkworm races PCR products size of contrasting response to thermal tolerance. The comparison of the sequenced nucleotide variations through multiple sequence alignment analysis of Hsp 90 variable region products of three races not showed any differences respect to their thermotolerance and formed the clusters among the voltinism. The comparison of aminoacid sequences of B. mori Hsps with dipteran and other insect taxa revealed high percentage of identity growing with phylogenetic relatedness of species. The conserved domains of B. mori Hsps predicted, in which the Hsp 20.8 possesses ${\alpha}-crystallin$ domain and Hsp 90 holds HATPase and Hsp 90 domains.

Keywords

References

  1. Ali, A., P.H Krone, D. S. Pearson and J. J. Heikkila (1996) Evaluation of stress inducible Hsp 90 gene expression as a potential molecular biomarker in Xenopus laevis. Cell Stress Chaperones 1, 62-69 https://doi.org/10.1379/1466-1268(1996)001<0062:EOSIHG>2.3.CO;2
  2. Becker, J. and E. A. Craig (1994) Heat-shock proteins as molecular chaperones. Eur. J. Biochem. 219, 11-23 https://doi.org/10.1111/j.1432-1033.1994.tb19910.x
  3. Brugge, J. S., E. Erikson and R. L. Erikson (1981) The specific interaction of the rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25, 363-372 https://doi.org/10.1016/0092-8674(81)90055-6
  4. Currie, S. and B. Tufts (1997). Synthesis of stress protein 70 (Hsp 70) in rainbow trout (Oncorhynchus mykiss) red blood cells. J. Exp. Biol. 200, 607-614
  5. Den Engelsman, J., D. Gerrits, W. W. de Jong, J. Robbins, K. Kato and W. C. Boelens (2005) Nuclear import of ${\alpha}$B-crystallin is phosphorylation-dependent and hampered by the myopathy-related mutant R120G. J. Biol. Chem. 280, 37139- 37148 https://doi.org/10.1074/jbc.M504106200
  6. De Jong, W. W., J. A. M. Leunissen and C. E. M. Voorter (1993) Evolution of the a-Crystallin / Small Heat-Shock Protein Family. Mol. Biol. Evol. 10, 103-126
  7. Dean, R. L. and B. G. Atkinson (1983) The acquisition of thermal tolerance in larvae of Calpodes ethlius (Lepidoptera) and the in situ and in vitro synthesis of the heat shock proteins. Can. J. Biochem. Cell Biol. 61, 472-479 https://doi.org/10.1139/o83-063
  8. Deshaies, R. J., B. D. Koch and R. Schekman (1988) The role of stress proteins in membrane biogenesis. Trends Biochem. Sci. 13, 384-388 https://doi.org/10.1016/0968-0004(88)90180-6
  9. Feder, M.E. and G. E. Hofmann (1999) Heat shock proteins, molecular chaperones and the stress response evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243-282 https://doi.org/10.1146/annurev.physiol.61.1.243
  10. Fink, A. F. (1999) Chaperone-mediated protein folding. Physiol. Rev. 79, 425-449 https://doi.org/10.1152/physrev.1999.79.2.425
  11. Glover, C. V. C. (1982) Heat shock effects on protein dephosphorylation in Drosophila; Heat Shock from Bacteria to Man. Schlessinger, M. J., M. Ashburner and Tissieres A. (ed.), Cold Spring Harbor Laboratory, NY
  12. Goldsmith, M. R., T. Shimada and H. Abe (2005) Genetics and genomics of the silkworm Bombyx mori. Ann. Rev. Entomol. 50, 71-100 https://doi.org/10.1146/annurev.ento.50.071803.130456
  13. Haselback, M., T. Franzmann, D. Weinfurtner and J. Buchner (2005) Some like it hot: structure and function of small heat shock proteins. Nat. Struct. Mol. Biol. 12, 842-846 https://doi.org/10.1038/nsmb993
  14. Hayens, J. I., M. K. Duncan and J. Piatiogorsky (1996) Spatial and temporal activity of the alpha B-crystallin/small heat shock protein gene promoter in transegenic mice. Dev. Dyn. 207, 75-88 https://doi.org/10.1002/(SICI)1097-0177(199609)207:1<75::AID-AJA8>3.0.CO;2-T
  15. Hightower, L. E. (1991) Heat shock stress protein, chaperones and proteotoxicity. Cell 66, 191-197 https://doi.org/10.1016/0092-8674(91)90611-2
  16. Holley, S. J. and K. R. Yamamoto (1995) A role fore Hsp 90 in retionoid receptor signal transduction. Mol. Biol. Cell 6, 1833-1842 https://doi.org/10.1091/mbc.6.12.1833
  17. Jakob, U., M. Gaestel, K. Engel and J. Buchner (1993) Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517-1520
  18. Joplin, K. H. and D. L. Denlinger (1990) Developmental and tissue specific control of the heat shock induced 70 kDa related proteins in the flesh fly Sarcophaga crassipalpis. J. Insect Physiol. 36, 239-249 https://doi.org/10.1016/0022-1910(90)90108-R
  19. Kampinga, H. H. (1993) Thermotolerance in mammalian cells: Protein denaturation and aggregation and stress proteins. J. Cell Sci. 104, 11-17
  20. Konstantopoulou, I. and Z. G. Scouras (1998) The heat shock gene Hsp 83 of Drosophila auraria: genomic organization, nucleotide sequences and long antiparallel coupled ORFs (LAC ORFs). J. Mol.Evol. 46, 334-343 https://doi.org/10.1007/PL00006310
  21. Krishnaswamy, S., M. N. Narashimanna, S. K. Suryanarayana and S. Kumaraj (1977). Silkworm rearing; in Manual on sericulture Vol. 2., Mysore Publ., Central Silk Board
  22. Kumar, S., K. Tamura and M. Nei (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  23. Landais, I., J. M. Pommet, K. Mita, J. Nohata, S. Gimenez, P. Fournier, G. Devauchelle, D.C. Martine and M. Ogliastro (2001) Characterization of the cDNA encoding the 90 kDa heat-shock protein in the Lepidoptera Bombyx mori and Spodoptera frugiperda. Gene 271, 223-231 https://doi.org/10.1016/S0378-1119(01)00523-6
  24. Lange, B. M., A. Bachi, M. Wilm and C. Gonzalez (2000) Hsp 90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252-1262 https://doi.org/10.1093/emboj/19.6.1252
  25. Lewis, S., R. D. Handy, B. Cordi, Z. Billinhurst and M. H. Depledge (1999). Stress proteins (HSP's): methods of detection and their use as an environmental biomarker. Ecotoxicology 8, 351-368 https://doi.org/10.1023/A:1008982421299
  26. Lindquist, S. and E. A. Craig (1988). The heat-shock proteins. Annu Rev Genet. 22, 631-677 https://doi.org/10.1146/annurev.ge.22.120188.003215
  27. Lindquist, S. (1986) The heat-shock response. Annu. Rev. Biochem. 55, 1151-1191 https://doi.org/10.1146/annurev.bi.55.070186.005443
  28. Minami, M., M. Nakamura, Y. Emori and Y. Minami (2001) Both the N and C-terminal chaperone sites of Hsp 90 protein refolding. Eur. J. Biochem. 268, 2520-2524 https://doi.org/10.1046/j.1432-1327.2001.02145.x
  29. Nadeau, D., S. Corneu, I. Plante, G. Morrow and R.M. Tanguay (2001) Evaluation of HSP 70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress Chaperones 6, 153-163 https://doi.org/10.1379/1466-1268(2001)006<0153:EFHAAB>2.0.CO;2
  30. Nagaraja, G. M. and J. Nagaraju (1995) Genome fingerprinting of the silkworm Bombyx mori using random arbitrary primers. Electrophoresis 16, 1633-1638 https://doi.org/10.1002/elps.11501601270
  31. Narberhaus, F. (2002) Á-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66, 64-93 https://doi.org/10.1128/MMBR.66.1.64-93.2002
  32. Nath, B. B. and S. C. Lakhotia (1989) Heat shock response in ovarian nurse cells of Anopheles stephensi. J. Biosci. 14, 14- 152
  33. Nover, L. (1991) (ed.) Heat Shock Response. Boca Raton, FL: CRC
  34. Pandey, P., A. Saleh, A. Nakazawa, S. Kumar, S. M. Srinivasula, V. Kumar, R. Weichselbaum, C. Nalin, E. S. Alnemri, D. Kufe and S. Kharbanda (2000) Negative regulation of cytochrome C-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 19, 4310-4322 https://doi.org/10.1093/emboj/19.16.4310
  35. Pershad, G. D., R. K. Datta, H. V. Vijayakumar, S. K. Bhargava and M. S. Jolly (1986) Performance of some multivoltine races of Bombyx mori L. Sericologia 26, 295-301
  36. Pratt, W. B. and D. O. Toft (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306-360 https://doi.org/10.1210/er.18.3.306
  37. Ritossa, F. M. (1962) A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia 18, 571- 573 https://doi.org/10.1007/BF02172188
  38. Sakano, D., L. I. Bin, X. I. A. Qingyon, K. yamamoto, H. fujii, and A. S. O. Yoichi (2006) Genes encoding small heat shock proteins of the silkworm Bombyx mori. Bioscience, Biotechnology and biochemistry 70, 2443-2450 https://doi.org/10.1271/bbb.60176
  39. Schlesinger, M. J. (1990) Heat shock proteins: a mini review. J. Biol. Chem. 265, 12111-12114
  40. Sejerkilde, M., J. G. Sorensen and V. Loeschcke (2003) Effects of cold and heat hardening on thermal resistance in Drosophila melanogaster. J. Insect Physiol. 49, 719-726 https://doi.org/10.1016/S0022-1910(03)00095-7
  41. Sun, Y. and T. H. Mac Rae (2005) Small heat shock proteins: molecular structure and chaperone function. Cellular and Mol. Life Scie. 62, 2460-2476 https://doi.org/10.1007/s00018-005-5190-4
  42. Tissieres, A., H. K. Mitchell and U. Tracy (1974) Protein synthesis in salivary glands of D.melanogaster. Relation to chromosome puffs. J. Mol Biol 84, 389-398 https://doi.org/10.1016/0022-2836(74)90447-1
  43. Weich, W. J., J. Buchner, R. Zimmermann and U. Jackob (1992) Hsp 90 chaperones protein folding in vitro. Nature 358, 169-170 https://doi.org/10.1038/358169a0
  44. Yost, H. J. and Lindquist, S. (1986) RNA splicing is interrupted by heat shock protein and is rescued by heat shock protein synthesis. Cell 45, 185-193 https://doi.org/10.1016/0092-8674(86)90382-X