References
- C. Kumsta, U. Jakob, Biochemistry 48, 4666. (2009). https://doi.org/10.1021/bi9003556
- U. Jakob, W. Muse, M. Eser, J.C.A. Bardwell, Cell 96, 341. (1999). https://doi.org/10.1016/S0092-8674(00)80547-4
- M. Ilbert, J. Horst, S. Ahrens, J. Winter, P.C.F. Graf, H. Lilie, U. Jakob, Nat. Struct. Mol. Biol. 14, 556. (2007). https://doi.org/10.1038/nsmb1244
- J. Winter, M. Ilbert, P.C.F. Graf, D. Ozcelik, U. Jakob, Cell 135, 691. (2008). https://doi.org/10.1016/j.cell.2008.09.024
- M.W. Akhtar, V. Srinivas, B. Raman, T. Ramakrishna, T. Inobe, K. Maki, M. Arai, K. Kuwajima, C.M. Rao, J. Biol. Chem. 279, 55760. (2004). https://doi.org/10.1074/jbc.M406333200
- J.H. Hoffmann, K. Linke, P.C.F. Graf, H. Lilie, U. Jakob, EMBO J. 23, 160. (2004). https://doi.org/10.1038/sj.emboj.7600016
- I. Janda, Y. Devedjiev, U. Derewenda, Z. Dauter, J. Bielnicki, D.R. Cooper, P.C.F. Graf, A. Joachimiak, U. Jakob, Z.S. Derewenda, Structure 12, 1901. (2004). https://doi.org/10.1016/j.str.2004.08.003
- J. Vijayalakshmi, M.K. Mukhergee, J. Graumann, U. Jakob, M.A. Saper, Structure 9, 367. (2001). https://doi.org/10.1016/S0969-2126(01)00597-4
- S.-J. Kim, D.-G. Jeong, S.-W. Chi, J.-S. Lee, S.-E. Ryu, Nat. Struct. Biol. 8, 459. (2001). https://doi.org/10.1038/87639
- H.-S. Won, L.Y. Low, R. De Guzman, M. Martinez-Yamout, U. Jakob, H.J. Dyson, J. Mol. Biol. 341, 893. (2004). https://doi.org/10.1016/j.jmb.2004.06.046
- L. Jaroszewski, R. Schwarzenbacher, D. McMullan, P. Abdubek, S. Agarwalla, E. Ambing, H. Axelrod, T. Biorac, J.M. Canaves, H. J. Chiu, et al., Proteins 61, 669. (2005). https://doi.org/10.1002/prot.20542
- D.-W. Sim, H.-C. Ahn, H.-S. Won, J. Kor. Magn. Reson. Soc. 13, 108. (2009). https://doi.org/10.6564/JKMRS.2009.13.2.108
- J.-H. Kim, K.-Y. Lee, S.-J. Park, B.-J. Lee, J. Kor. Magn. Reson. Soc. 14, 45. (2010). https://doi.org/10.6564/JKMRS.2010.14.1.045
- P.C.F. Graf, M. Martinez-Yamout, S. VanHaerents, H. Lilie, H.J. Dyson, U. Jakob, J. Bio. Chem. 279, 20529. (2004). https://doi.org/10.1074/jbc.M401764200
- B. Odaert, I. Landrieu, K. Dijkstra, G. Schuurman-Wolters, P. Casteels, J.-M. Wieruszeski, D. Inze, R. Scheek, G. Lippens, J. Biol. Chem. 277, 12375. (2002). https://doi.org/10.1074/jbc.M111741200
- E. Barbar, Biopolymers 51, 191. (1999). https://doi.org/10.1002/(SICI)1097-0282(1999)51:3<191::AID-BIP3>3.0.CO;2-B
- C.M. Cremers, D. Reichmann, J. Hausmann, M. Ilbert, U. Jakob, J. Biol. Chem. 285, 11243. (2010). https://doi.org/10.1074/jbc.M109.084350
Cited by
- Verification of the interdomain contact site in the inactive monomer, and the domain-swapped fold in the active dimer of Hsp33 in solution vol.586, pp.4, 2012, https://doi.org/10.1016/j.febslet.2012.01.011
- Backbone NMR Assignments of a Prokaryotic Molecular Chaperone, Hsp33 from Escherichia coli vol.16, pp.2, 2012, https://doi.org/10.6564/JKMRS.2012.16.2.172
- Backbone NMR Assignments of an Uncharacterized Protein, SF1002 from Shigella flexneri 5a M90T vol.19, pp.1, 2015, https://doi.org/10.6564/JKMRS.2015.19.1.036
- Oxidation-Induced Conformational Change of a Prokaryotic Molecular Chaperone, Hsp33, Monitored by Selective Isotope Labeling vol.15, pp.2, 2011, https://doi.org/10.6564/JKMRS.2011.15.2.137
- Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process vol.427, pp.24, 2015, https://doi.org/10.1016/j.jmb.2015.09.029
- Oxidation-induced conformational change of Hsp33, monitored by NMR vol.19, pp.3, 2015, https://doi.org/10.6564/JKMRS.2015.19.3.099