For better management of micronutrients in crop cultivation, the availability of micronutrients in the soils must be updated and evaluated as a first step. This study was conducted to investigate the distribution of micronutrients in soils of plastic film houses. Total 396 soil samples were collected from the plastic film houses of various crops in Yeongnam province (strawberry, 96; red pepper, 66; tomato, 74; oriental melon, 97; cucumber, 63). Total and available contents of B, Cu, Zn, Fe, and Mn in the soils were determined. Available B was extracted with hot water and available Cu, Zn, Fe, and Mn were extracted with 0.1 N HCl. Mean values of total contents of B, Cu, Zn, Fe, and Mn in the plastic film house soils were 25, 32, 74, 21,316, and $420mg\;kg^{-1}$, respectively. Total contents of micronutrients in the plastic film house soils were similar to those found in the open fields nearby, while they were different among the locations investigated. Mean contents extractable B, Cu, and Zn in the plastic film house soils were 2.1, 7.5, and $35mg\;kg^{-1}$, respectively. The contents of extractable B, Cu, and Zn in the plastic film house soils were higher than those found in the open fields nearby with exceptions of B in soils of strawberry and Cu in soils of red pepper and oriental melon. However, mean contents of extractable Fe and Mn in the plastic film house soils were 156 and $146mg\;kg^{-1}$, respectively, and the mean content of extractable Fe was much lower than that found in open fields nearby. The contents of extractable Zn, Fe, and Mn were higher than the sufficient levels for the crop requirements in most of the plastic film house soils investigated. Contents of extractable Cu in most soils of strawberry, tomato and cucumber cultivations were higher than the sufficient level. However, extractable Cu contents were below the sufficient level in about 30% of investigated soils of red pepper and oriental melon cultivation. Soils containing higher contents of extractable B than the sufficient level were relatively fewer in comparison to the other micronutrients.