Estimation of Optimum Application Rate of Nitrogen Fertilizer Based on Soil Nitrate Concentration for Tomato Cultivation in Plastic Film House

토양의 질산태 질소 검정에 의한 시설재배 방울토마토의 질소 적정시비량 추정

  • Kang, Seong-Soo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Hong, Soon-Dal (Department of Agricultural Chemistry, Chungbuk National University)
  • 강성수 (충북대학교 농과대학 농화학과) ;
  • 홍순달 (충북대학교 농과대학 농화학과)
  • Received : 2003.11.11
  • Accepted : 2004.03.23
  • Published : 2004.04.30

Abstract

This study was conducted to estimate the optimum application rate of fertilizer N based on $NO_3-N$ concentration in soils for tomato (Lycopersicon esculentum Mill.) cultivation in plastic film house. Tomato plants were cultivated with and without fertilizer in twelve soils which have different concentrations of $NO_3-N$ ranging from 46 to $344mg\;kg^{-1}$. Dry weight (DW) of above-ground part of tomato with no fertilizer ranged from 28.9 to $112.5g\;plant^{-1}$, depending on N-supplying capability of soils. The soil $NO_3-N$ was positively correlated with DW ($r=0.83^{**}$) and N uptake ($r=0.78^{**}$) by tomatoes in no fertilizer treatment, and negatively correlated with fertilizer effciencies resulted from the differences of DW and N uptake between fertilized and non-fertilized plot. The relationships between soil $NO_3-N$ concentration and DW, N uptake, and fertilizer efficiency were analyzed to determine the critical levels of soil $NO_3-N$ for tomato cultivation. The limit critical levels of soil $NO_3-N$ were estimated to be more than $280mg\;kg^{-1}$ for no application of fertilizer N and to be less than $50mg\;kg^{-1}$ for recommended application of fertilizer N. These critical levels of soil $NO_3-N$ were nearly the same as those calculated from regression equation between electrical conductivity(EC) and soil nitrate for critical levels of EC in recommendation equation of fertilizer N for tomato under the plastic film house by NationaI Institute of Agricultural Science and Technology. Consequently, the optimal application rate of ferdilizer N for tomato cultivation in the soils containing $NO_3-N$ concentration between $280mg\;kg^{-1}$ and $50mg\;kg^{-1}$ was estimated by the equation Y = -0.4348X+121.74, where Y is the percent(%) to the recommended application rate of N fertilizer and X is the soil $NO_3-N$ concentration ($mg\;kg^{-1}$).

토양의 질산태 질소 함량이 46에서 $344mg\;kg^{-1}$으로 분포되는 시설재배지 12개 토양으로 시비수준을 무비구와 표준시비구로 구분하여 방울토마토를 공시 작물로 한 생산력 검정시험을 포트재배로 수행하였다. 무비구의 토마토 건물중은 최소 $28.9g\;plant^{-1}$에서 최대 $112.5g\;plant^{-1}$으로 토양 비옥도 차이에 의해 다양한 생산능력을 보였으며 무비구 토마토의 양분 흡수량도 동일한 경향을 나타냈다. 토양의 질산태 질소 함량은 무비구의 토마토 건물중 및 질소 흡수량과 고도로 유의한 정의 상관 ($r=0.83^{**}$$r=0.78^{**}$)을 보였고, 표준시비구와 무비구의 건물중과 질소흡수량 차이로 평가한 비료효과 및 질소시비효율과는 부의 상관을 보였다. 토양의 질산태 질소 수준에 따른 무비구 토마토의 건물중. 질소흡수량, 비료효과. 질소시비효율과의 상호관계 분석으로부터 질소 무시비 재배를 위한 토양의 질산태 질소 상한기준은 $280mg\;kg^{-1}$, 질소 표준시비 재배를 위한 토양의 질산태 질소 하한기준은 $50mg\;kg^{-1}$ 이하로 추정되었다. 이러한 질산태 질소 한계기준은 시설재배 토마토의 질소시비 추천식에서 전기전도도의 한계기준을 질산태질소로 환산한 기준과 거의 동일하였다. 따라서 상기의 질산태 질소 상한기준과 하한기준으로부터 토양의 질산태 질소 함량이 $50-280mg\;kg^{-1}$ 사이인 경우 질소시비량은 다음과 같은 직선모델식으로 추천하였다. Y (질소 표준시비량에 대한 시비비율, %) = -0.4348 X 토양 중 $NO_3-N$($mg\;kg^{-1}$) + 121.74

Keywords

References

  1. Addiscott, T. M., A. P. Whitmore, and D. S. Powlson. 1991. Parming, fertilizers and the nitrate problem. CAB International, UK
  2. Black, C. A. 1993. Soil fertility evaluation and control. Lewispublishers
  3. Cate, R. B. Jr., and L. A. Nelson. 1971. A simple statisticalprocedure for partitioning soil test correlation data into two class.SoU. Sci. Soc. Am. 35:658-660 https://doi.org/10.2136/sssaj1971.03615995003500040048x
  4. Hong, S. D. 1998. Fertilizer recommendation based on soil testingfor tomato in plastic film house. J. Korean. Soc. Soil. Sci. Pert.31:350-358
  5. Hong, S.D. 2001. Effective management for cultivation soils underplashc film house, In International symposium on soil and water management. Korean J. Soil. Sci. Fert. p.120-164
  6. Hong, S. D., R. H. Fox, and W. P. Piekielek. 1990. Field evaluation of several chemical indexes of soil nitrogen availability. Plant Soil 123:83-88 https://doi.org/10.1007/BF00009929
  7. Hong, S. D., B. G. Kang, and J. J. Kim. 1998. Optimum fertilization based on soil testing for chinese cabbage cultivation in plastic film houses. J. Korean Soc. Soil. Sci. Fert. 31:16-24
  8. Hong, S. D., K. I. Kim, H. T. Park, and S. S. Kang. 2001. Relationship between leaf cMorophyll reading value and soil N-supplying capability for tomato in green house. Korean J. Soil. Sci. Fert. 34:85-91
  9. Jemison, J. M. Jr., and R. H. Fox. 1994. Nitrate leaching from nitrogen fertilized and manured corn measured with zero-tension pan lysimeters. J. Environ. Qual. 23:337-343 https://doi.org/10.2134/jeq1994.00472425002300020018x
  10. Johns, M. W., and C. R. Lawrence. 1973. Nitrate-rich groundwater in Australia: a possible cause of methaemoglobimaemia in infants. The Medical J. of Australia. 2:925-927
  11. Johnson, C. J., P. A. Bonrud, T. L. Dosch, A. W. Kilness, K. A. Senger, D. C. Busch, and MR. Meyer. 1987. Fatal outcome of methemoglobinemia in an infant. J. Am. Med. Assoc. 257:2796-2797 https://doi.org/10.1001/jama.257.20.2796
  12. Kang, B. G., I. M. Jeong, K. B. Min, and J. J. Kim. 1996. Effect of salt accumulation on the germination and growth of lettuce (Lactuca sativa L.). J. Korean Soc. Soil Sci. Fert. 31:9-15
  13. Kim, J. H., J. S. Lee, B. Y. Kim, S. G. Hong, and S. K. Ahn. 1999. Analysis of groundwater used for agriculture in Kyonggi province. Korean J. Environ. Agric. 18:148-154
  14. Kwak, H. K., Y. S. Song, B. Y. Yeon, and B. L. Huh. 1996. Comparison of laboratory methods to determine the potential nitrogen supply of soils for nitrogen recommendation of vinyl house crops. J. Korean Soc. Soil. Sci. Fert. 29:282-287
  15. Kwak, H. K., Y. S. Song, and C. W. Hong. 1997. Nitrogen recommendation based on soil nitrate test for chinese cabbage growth in plastic film house. 30:84-88
  16. Lee, D. B., K. B. Lee, and K. S. Rhee. 1996. Changes of chemical contents in groundwater at controlled horticulture in Honam area. Korean J. Environ. Agric. 15:348-354
  17. Lee, G. J., B. K. Kang, H. J. Kim, S. K Park, and K. B. Min. 2001. Effect of Nitrogen fertilizers on soil pH, EC, $NO_3-N and lettuce (Lactuca sativa L.) growth. Korean J. Soil. Sci. Fert. 34:122-128
  18. Lee, K. B., D. B. Lee, S. B. Lee, and J. D. Kim. 1999. Change in agricultural irrigation water quality in Mankyeong River. Korean J. Enviion. Agric. 18:6-10
  19. Nelson, L. A., and R. L. Anderson. 1984. Partitioning of soil testcrop response probability, p. 19-38. In Soil testing: Correlating and interpreting the analytical results, ASA special publication No. 29, Madison, WI, USA
  20. NIAST. 1988. Methods of soil analysis. National Institute of Agricultural Scienceand Technology, RDA, Suwon, Korea
  21. Park, B. K., T. H. Jeon, Y. H. Kim, and Q. S. Ho. 1994. Status of farmer's application rates of chemical fertilizer and farm manure for major crops. J. Konsan Soc. Soil Sci. Fert. 27:238-246
  22. Park, H. T., and S. D. Hong. 2000. Optimum level of nitrogen fertilizer based on content of nitrogen for growing chinese cabbage in green house. Kowan J. Soil Sci. Fert. 33:384-392
  23. Song, Y. S., H. K. Kwak, B. L. Huh, and S. E. Lee. 1996. Use efficiency of nitrate nitrogen accumulated in plastic film house soils under continuous vegetable cultivation. J. Korean Soc. Soil. Sci. Fert. 29:347-352
  24. Spalding, R. F., and M. E. Exner. 1993. Occurrence of nitrate in groundwater - A Review. J. Enviion. Qual. 22:392-402