• Title/Summary/Keyword: Hot-extrusion

Search Result 221, Processing Time 0.025 seconds

Fabrication and Evaluation of High Mg-content ECO-Almag6~9 Extruded Products by using Oxidation-resistant Mg Mother Alloy (내산화성 Mg 모합금을 이용한 고(高) Mg 함유 ECO-Almag6~9 합금 압출재의 제조 및 특성평가)

  • Kim, Bong-Hwan;Yoon, Young-Ok;Kim, Shae-Kwang
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.252-259
    • /
    • 2021
  • The magnesium is one of the important alloying elements in the conventional aluminum alloys. The addition of magnesium to aluminum is well known to increase the mechanical strength of the aluminum without the trade-off of the decreased elongation. However, the content of magnesium in aluminum alloys has been limited to be lower than about 5wt.% because of the high oxidation tendency of magnesium element during the manufacturing processes such as casting, hot-forming and post heat-treatments, which can deteriorate the quality and properties of the final products. In this study, new 'ECO-Almag6~9' (containing 6~9wt%Mg) alloys were investigated to be made of the ECO-Mg master alloy, which has been invented to reduce the oxidation tendency of itself. It was successfully demonstrated that ECO-Almag6~9 alloys can be fabricated through the mass-production facilities of DC casting and extrusion routes without the problems of magnesium oxidation. In addition, it was confirmed that the strength and ductility were simultaneously improved due to the addition of high magnesium contents.

Heat waves impair cytoplasmic maturation of oocytes and preimplantation development in Korean native cattle (Hanwoo)

  • Sa, Soo Jin;Jeong, Jiyeon;Cho, Jaesung;Lee, Seung-Hwan;Choi, Inchul
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.493-498
    • /
    • 2018
  • There has been widespread warming and a general increase in summer temperatures over the Korean peninsula ($0.5^{\circ}C$/10 years from 2001 to 2010). South Korea is transforming into a subtropical region, and the productivity of livestock is affected by the climatic changes. In this study, we investigated whether the summer heat waves affect the developmental competency of Korean native cattle (Hanwoo), a taurine type of cattle with a small portion of indicine varieties. We collected oocytes during the summer (heat stress, HS) and autumn (non-HS condition) and examined the developmental competencies including in vitro maturation and preimplantation embryo development. No significant differences were observed between the HS and non-HS oocytes in nuclear maturation (extrusion of the polar body); however, the cleavage and blastocyst rates were significantly lower in the HS group than those in the non-HS group. The lower developmental competence of the HS oocytes compared to the non-HS is, in part, due to insufficient cytoplasmic maturation because of a higher production of Reactive oxygen species (ROS) levels as well as peri/cortical distributed mitochondria in the HS oocytes after in vitro maturation. Next, we examined the ROS and mitochondria distribution and found a significant increase in the levels of ROS in the HS oocytes and a polarized distribution (pericortical cytoplasm) of mitochondria in the HS oocytes. In summary, impaired cytoplasmic maturation of oocytes from exposure to HS affects the preimplantation embryo development by dysfunction of mitochondria. To improve reproductive performance, embryo transfer using cryopreserved embryos/oocytes is recommended in the hot summer season of South Korea.

Properties of Bulk and Powder of $Al_{86}Ni_6Ce_4Mg_4$ Amorphous Alloy Produced by He Gas Atomization (헬륨가스분사법으로 제조된 $Al_{86}Ni_6Ce_4Mg_4$ 비정질합금 분말과 성형재의 특성)

  • Bae, Cha-Hurn;Kim, Sung-Gyoo;Lee, Byung-Woo;Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.158-163
    • /
    • 1997
  • Properties of $Al_{86}Ni_6Ce_4Mg_4$ alloy powder produced by helium gas atomization process were investigated by using DSC, XRD, SEM and TEM. The powders below 32 ${\mu}m$ in diameter were identified as an amorphous phase mixed with a ${\alpha}-Al$ phase. $Al_{86}Ni_6Ce_4Mg_4$ bulk alloy was manufactured by hot extruding the alloy powders at various temperatures, and the estimation of its mechanical properties was carried out subsequently. As a result, the bulk alloy extruded at the temperature below $450^{\circ}C$ exhibited the microstructure in which the near-spherical shape of some powders below 20 ${\mu}m$ were nearly unchanged and fine voids between matrix and powders were formed during extrusion process. On the other hand, the tensile strength and elongation at room temperature for $Al_{86}Ni_6Ce_4Mg_4$ bulk alloy extruded at $450^{\circ}C$ were 750 MPa and 7.5%, respectively.

  • PDF

Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys (과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향)

  • Kim, Chul-Hyun;Joo, Dae-Heon;Kim, Myung-Ho;Yoon, Eui- Pak;Yoon, Woo-Young;Kim, Kwon-Hee
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

FEA of Pipe Rolling Process Using Planetary Rolling Mill for Stainless Steel (유성압연기를 사용한 스테인리스 강관 압연공정의 유한요소해석)

  • Lee, Jung-Kil;Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.244-251
    • /
    • 2011
  • Pipe rolling process using the planetary rolling mill for AISI 304 stainless steel has been studied by using finite element method. Mannesmann method using three-roll is applied to this rolling process. Commonly, rolling process has started from the cold working and finished to the hot working. This rolling process has more advantage that make reduction of process and cost than existing extrusion process. This process includes various and complex process parameters. Each of the process parameters affects forming result. Therefore, all of the process parameters should be considered in FEA. In this study, possibility and productivity of forming pipe for AISI 304 stainless steel had been investigated. Also, preheating process and variations of rotation velocity and product thickness were considered in FEA. Rolling process for AISI 304 stainless steel pipe was successfully simulated and it should be useful to determine optimal rolling condition.

Tensile Behavior Characteristics of CANDU Pressure Tube Material Degraded by Neutron Irradiations (중수로 압력관 재료의 조사 열화에 따른 인장거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.188-195
    • /
    • 2002
  • To investigate the degradation of mechanical properties induced mainly by neutron irradiation, the tensile tests were conducted from room temperature to 300\\`c using the irradiated and the unirradiated Zr-2.5Nb pressure tube materials. The irradiated longitudinal and transverse specimens were collected from the coolant inlet, middle, and outlet parts of M-11 tube which had been operated in Wolsung CANDU Unit-1 and exposed to different operating temperatures and irradiation fluences. The different tensile behavior was characterized not by the fluences of irradiation but by the tensile loading direction. The transverse specimen showed the higher strength and lower elongation than those of the longitudinal one. It was believed that these phenomena resulted from the microstructure anisotropy caused by the extrusion process. The increased strength hardening and decreased elongation embrittlement of the irradiated material were compard to those of the unirradiated one. While the tensile strength of the inlet was higher than that of the outlet, the elongation of the inlet was lower than that of outlet. Considering the operation condition, it was proposed that the operating temperature could be a more effective parameter than the irradiation fluence for long-time life. Through the TEM observation, it was found that while the a-type dislocation density was increased, the c-type dislocation was not changed in the irradiated. The fact that the higher dislocation density was sequentially distributed over the inlet, the middle, and the outlet parts was consistent with the distribution of the tensile strength.

Hyper-peritectic Al-Ti Alloys as In-Situ composites through Rapid Solidification (급냉응고법에 의한 In-Situ 복합재료로서의 과포정 Al-10wt%Ti 합금(I))

  • Kim, Hye-Seong;Geum, Dong-Hwa;Kim, Geung-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.263-268
    • /
    • 1999
  • In this study, a new concept of aluminum-matrix composites and the possibility of in-situ processing are suggested, and preliminary results on AI- Ti system are presented. Fine powders of AI-lO% Ti were prepared by the gas atomization so that fine $Al_3Ti$ formed into flake shape. A 25v/o $Al_3Ti/Al$ composite sample was made by the pow­d er metallurgy process involving hot extrusion. Microstructure and mechanical behavior both at room temperature and high temperatures were analysed by OM, SEM, TEM and tension test. Microstructural characteristics and mechanical properties of the composites exhibited similar behavior to those of $SiC_w/2124$ composites. Merits and drawbacks of the $Al_3Ti/Al$ composites are discussed together with a possibility of further improvement.

  • PDF

Microstructure, High Temperature Deformation Behavior and Hot Formability of Modified Al-0.7Mn alloy (개량 Al-0.7Mn 합금의 미세조직, 고온 변형 거동 및 성형성)

  • Kang, T.H.;Huang, Y.;Shin, Y.C.;Choi, H.J.;Roh, H.R.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.365-375
    • /
    • 2022
  • The microstructure and high-temperature plastic deformation behavior of the modified Al-0.7Mn alloy were investigated and compared with the conventional Al-0.3Mn (Al3102) alloy. α-Al (matrix) and Al6(Mn, Fe) phases were identified in both alloys. As a result of microstructure observation, both alloys showed equiaxed grains, and Al-0.7Mn alloy showed larger grain size and higher Al6(Mn, Fe) fraction than Al-0.3Mn alloy. High temperature compressive tests, the deformation temperatures of 410℃, 450℃, 490℃, 530℃ and strain rats of 10-2/s, 10-1/s, 1/s, 10/s, were conducted using Gleeble equipment. The flow stress values of Al-0.7Mn alloy were higher than that of Al-0.3Mn alloy at all strain rates and temperature conditions. Constitutive equations were presented using the flow stresses obtained from experimental results and the Zener-Hollomon parameter. In the true stress-true strain curves of the two alloys, the experimental and predicted values were in good agreement with each other. Based on the dynamic material model, eutectic deformation maps of Al-0.7Mn and Al-0.3Mn alloys were suggested, and the plastic instability region was presented. The modified Al-0.7Mn alloy showed a wider plastic instability region than that Al-0.3Mn alloy. Based on the process deformation maps, the MPE tube parts could be manufactured through the actual extrusion process using the suggested conditions.

Preparation of solvent-based eco-friendly stone paper (용제기반 친환경 stone paper의 제조)

  • Seok Ju Jeong;Do Yoon Kam;Eun Ok Choi;Hyun Cho;Byeong Woo Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.139-144
    • /
    • 2023
  • Stone papers made of inorganic filler and plastic polymer do not use pulp, which is the main raw material of existing papers, so they contribute to the preservation of nature and can be used as more eco-friendly materials when they have biodegradability. Since most stone papers are manufactured by hot extrusion, the amount of ceramic fillers and related physical properties are limited to control manufacturing workability. In this study, the stone paper composition was prepared in a liquid form using solvents, so that there was little limitation on the amount of ceramic filler added and it was also easy to add additives to control biodegradability. They were fabricated from eco-friendly raw materials using waste oyster shells as an inorganic filler and (recyclable) PVC materials as an organic binder. After making a solution using common solvents for PVC, inorganic filler and cellulose to impart biodegradability were mixed and processed into sheets to prepare solvent-based stone papers, and their paper properties were evaluated.

Effect of Drying Methods on Physicochemical Properties of Agar (건조 방법이 한천의 물리${\cdot}$화학적 특성에 미치는 영향)

  • KIM Oc-Do;KIM Yuck-Yong;LEE Nahm-Gull;CHO Young-Je;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.5
    • /
    • pp.681-688
    • /
    • 1996
  • To investigate the effort of drying methods on the physicochemical properties of agar, gel strength, viscosity, melting and setting point, and phase transition by differential scanning calorimetery (DSC) during its heating were determined. In addition the structural differences of agar powder by scanning electron microscope (SEM) was examined. The most shortest onset temperature of gel strength increase was extruding method among any other methods. Viscosity of agar with hot air method, 400.00 cps at $45^{\circ}C$, was markedly increased, but with spraying and extruding ones were little change. The melting and setting point, and the temperature for maximum endothermic and enthalpy for agar with extruding one, $80.01^{\circ}C,\;36.05^{\circ}C\;and\;61.72^{\circ}C,\;0.73\;cal/g$, respectively, were lowest among the drying ones. But in the case of reheating after gelling, there were little change in all methods. Observing the surface structure of agar with SEM, extruding method showed the most unstable with absorptive property.

  • PDF