• Title/Summary/Keyword: Hot-Pressing

Search Result 584, Processing Time 0.024 seconds

The effect of MEA fabrication procedure on PEMFC performance (고분자전해질 연료전지의 MEA 제조방법에 따른 성능비교)

  • Cho Yong-Hun;Cho Yoon-Hwan;Park In-Su;Choi Baeckbom;Jung Dae-Sik;Sung Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.291-295
    • /
    • 2005
  • The PEMFC behavior is quite complex and is influenced by several factors, including composition and structure of electrodes and membrane type. Fabrication of MFA is important factor for proton exchange membrane fuel cell. MFA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC wi th direct coat ing method was better than wi th hot pressing method because membrane internal resistance and membrane-:-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

Fabrication and Properties Analysis of MEA for PEMFC (고분자전해질 연료전지용 MEA 제조 및 특성평가)

  • Cho Y.H.;Cho Y.H.;Park I.S.;Sung Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.230-234
    • /
    • 2005
  • Fabrication of MEA is important factor for proton exchange membrane fuel cell (PEMFC). MEA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC with direct coating method was better than with hot pressing method because membrane internal resistance and membrane-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

Direct Solid State Synthesis of Zn4Sb3 by Hot Pressing and Thermoelectric Properties (열간 압축 공정에 의한 Zn4Sb3의 직접 고상 반응 합성 및 열전특성)

  • Ur Soon-Chul
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.255-260
    • /
    • 2005
  • Direct solid state synthesis by hot pressing has been applied in order to produce high efficiency $Zn_4Sb_3$ bulk specimens. Single phase $Zn_4Sb_3$ with 98.5% of theoretical density was successfully produced by direct hot pressing of elemental powders containing 1.2 at.% excess Zn. Thermoelectric properties as a function of temperature were investigated from room temperature to 600 K and compared with results of other studies. Transport properties at room temperature were also evaluated. Thermoelectric properties of single phase $Zn_4Sb_3$ materials produced by direct synthesis were measured and are comparable to the published data. Direct solid state synthesis by hot pressing provides a promising processing route in this material.

Hot Pressing after Cold Cyclic Compaction of Alumina Powder Matrix Mixtures -Effects of Cold Cyclic Compaction- (알루미나 분말 기지혼합체의 상온 반복압축 후 가압소결 -상온 반복압축 효과-)

  • Son, G.S.;Suh, J.;Park, B.H.;Kim, K.T.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.157-163
    • /
    • 1993
  • Hot pressing after cold cyclic compaction of Al2O3 powder mixtures containing SiC whiskers or Al2O3 short fibers is studied with emphasis on the effects of cold cyclic compaction. The green density of the mixtures increases as the cycle number increases and the cyclic pressure becomes higher. The higher green density is also obtained by cold cyclic compaction with the lower pressrue than a single stroke cold compaction. To achieve a higher densification during hot pressing, cold cyclic compaction before hot pressing is more efficient compared to the conventional hot pressing process (without cold cyclic compaction). Moreover, a low cyclic pressure did not affect on toughening mechanism by whisker reinforcement.

  • PDF

Optimal Shape Design of a Container Under Hot Isostatic Pressing by a Finite Element Method (열간등가압소결 공정에서 유한요소법을 이용한 컨테이너 형상의 최적설계)

  • Jeong, Seok-Hwan;Park, Hwan;Jeon, Gyeong-Dal;Kim, Gi-Tae;Hwang, Sang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2211-2219
    • /
    • 2000
  • Near net shape forming of 316L stainless steel powder was investigated under hot isostatic pressing. To simulate densification and deformation of a powder compact in a container during hot isostatic pressing, the constitutive model of Abouaf and co-workers was implemented into a finite element analysis. An optimal design technique based on the design sensitivity was applied to the container design during hot isostatic pressing. The optimal shape of the container was predicted from the desired final shape of a powder compact by iterative calculations. Experimental data of 316L stainless steel powder showed that the optimally designed container allowed precise forming of the desired powder compact during hot isostatic pressing.

Microstructures and Tensile Properties of $A_2O_3$ Short Fiber/Al-Si-Mg Alloy Composites Fabricated by Rheo-compocasting and Hot Pressing (Rheo-compocasting 및 Hot Pressing에 의하여 제조한 $Al-Si-Mg/Al_2O_3$ 단섬유강화 복합재료의 조직 및 인장특성)

  • Kwak, Hyun-Man;Lee, Hag-Ju
    • Journal of Korea Foundry Society
    • /
    • v.13 no.6
    • /
    • pp.547-554
    • /
    • 1993
  • Aluminum alloy matrix composites reinforced with various amounts of $Al_2O_3$ short fibers have been produced by rheo-compocasting accompanied by hot pressing. When composites reinforced with fibers are produced by rheo-compocasting, S-L process is the most effective method for homogeneous dispersion of fibers. A sound composites with the improved orientation(3 dimension${\rightarrow}$2 dimension) of the fibers and increased volume fraction of them have been fabricated through the hot pressing of the casted composites. Fibers are broken down when rheo-compocasting, hot pressing, and $T_6$ treating. Among them fibers are broken down most heavily in the hot pressing. And even in the case of the composite reinforced with 30 vol% fibers, which showed the hardest fiber break down, aspect ratio(11.6) is higher than critical aspect ratio(10.7). The fiber strengthening effect in the composites has showed upto 573K. As the test temperature increases to the range of 573K, the effect has been higher. The fracture of composites is controlled by fiber from room temperature to 473K, but the fracture of composites is controlled by interface between fiber and matrix alloy above 473K.

  • PDF

Coercivity of Hot-pressed Compacts of Nd-Fe-B-type HDDR-treated Powder

  • Abdul Matin, Md.;Kwon, Hae-Woong;Lee, Jung-Goo;Yu, Ji-Hun
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ HDDR-treated powder was compacted by hot-pressing using different configurations of dies and heating rates. The die configurations were especially different in terms of the evacuation system that was used in heating for hot-pressing. The coercivity in the compacts was influenced by the evacuation system of the die and heating rate. In spite of the identical hot-pressing temperature and heating rate, coercivity was radically reduced above $600^{\circ}C$ in the compacts prepared in the closed-type die compared to that in the compacts prepared in the open-type die. The coercivity in the compacts prepared in the closed-type die decreased with increasing heating rate and the value further increased when extreme high heating rate was employed. $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ HDDR-treated powder contained a significant amount of residual hydrogen (approx. 1500 ppm) in the form of $Nd_2Fe_{14}BH_x$ hydride. The dramatic coercivity decrease in the compact prepared in the closed die is attributed to the disproportionation of $Nd_2Fe_{14}BH_x$ hydride. High coercivity is mainly due to the effective desorption of hydrogen or the suppression of hydrogen-related disproportionation upon hot-pressing.

Hot Pressing Technology for Improvement of Density Profile and Sound Absorption Capability of Particleboard (파티클보드의 밀도경사와 흡음성 개선을 위한 열압기술)

  • Park, Hee Jun;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 2002
  • Improvement of density profile and sound absorption capability of particleboard was attempted. Three types of hot pressing methods examined ; flat-platen pressing method (A-type pressing), hot pressing in forming box (B-type pressing), and hot pressing set up jagged caul in forming box (C-type pressing). The raw materials were larch(Larix leptolepis (S, et. Z.) Gorden) shavings, phenol formaldehyde resin, and the particleboard perforated with stair type. The physical and mechanical properties such as specific gravity, bending strength (MOR), internal bonding strength (IB) and sound absorption coefficients were examined. The results are summarized as follows : 1) The MOR and internal bonding strength of the board pressed in forming box were higher than those of flat-platen pressed board. 2) The minimum density to average density ratio in thickness direction which pressed in forming box showed about 923%, in the case of 35 mm commercial particleboard and 50 mm flat-platen pressed board, its values showed about 66.4% and 865% respectively. 3) Sound absorption coefficients of the particleboard perforated with stair type were higher than those of flat-plated pressed board and commercial particleboard.

Microstructure and Wear Resistance Properties of Cu-W Sintered Materials Fabricated by Hot Pressing (Hot pressing으로 제조된 Cu-W계 소결재의 미세조직 및 내마모특성)

  • Park, Ji-Hwan;Kim, Su-Bang;Park, Yun-U
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.227-232
    • /
    • 2000
  • Cu-W composites containing 20wt.% W were fabricated by hot pressing. Hot pressing was carried out at temperatures ranging from 800 to $1000^{\circ}C$ under pressures of 15MPa for 30MPa for 30min and 60min. This process gave composites of higher density, higher hardness and higher wear resistance than the conventional sintering processes. However, the microstructure of Cu-W composites under pressure of 15MPa revealed there was an inhomogeneous distribution of W, segregation of W on some area. These undesirable results are attributed to the immiscibility of W in Cu and the pressure effect on sintering.

  • PDF