• Title/Summary/Keyword: Hot stove

Search Result 8, Processing Time 0.023 seconds

Modeling of heat efficiency of hot stove based on neural network using feature extraction (특성 추출과 신경회로망을 이용한 열 풍로 열효율에 대한 모델링)

  • Min Kwang Gi;Choi Tae Hwa;Han Chong Hun;Chang Kun Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.60-66
    • /
    • 1998
  • The hot stove system is a process that is continuously and constantly generating the hot combustion air required for the blast furnace. The hot stove process is considered as a main energy consumption process because it consumes about $20\%$ of the total energy in steel making works. So, many researchers have interested in the improvement of the heat efficiency of the hot stove to reduce the energy consumption. But they have difficulties in improving the heat efficiency of the hot stove because there is no precise information on heat transformation occurring during the heating period. In order to model the relationship between the operating conditions and heat efficiencies, we propose a neural network using feature extraction as one of experimental modeling methods. In order to show the performance of the model, we compare it with Partial Least Square (PLS) method. Both methods have similarities in using the dimension reduction technique. And then we present the simulation results on the prediction of the heat efficiency of the hot stove.

  • PDF

Mechanism of Stress Corrosion Cracking of Hot Stove Shells and Preventive Measures (고로 열풍로에서의 응력부식발생 및 방지대책)

  • An, Gang-Hun;Park, Tae-Jo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.279-284
    • /
    • 2002
  • The expected life of the hot stove equipments for #2 blast furnaces in Gwangyang Steel Works is about 40 years. However, the stress corrosion cracking(SCC) are founded in heat affected zone only 10 years operation. In this paper, the mechanism of SCC are investigated and the preventive measures are recommended.

  • PDF

A Six Sigma Methodology Using Data Mining : A Case Study of "P" Steel Manufacturing Company (데이터 마이닝 기반의 6 시그마 방법론 : 철강산업 적용사례)

  • Jang, Gil-Sang
    • The Journal of Information Systems
    • /
    • v.20 no.3
    • /
    • pp.1-24
    • /
    • 2011
  • Recently, six sigma has been widely adopted in a variety of industries as a disciplined, data-driven problem solving approach or methodology supported by a handful of powerful statistical tools in order to reduce variation through continuous process improvement. Also, data mining has been widely used to discover unknown knowledge from a large volume of data using various modeling techniques such as neural network, decision tree, regression analysis, etc. This paper proposes a six sigma methodology based on data mining for effectively and efficiently processing massive data in driving six sigma projects. The proposed methodology is applied in the hot stove system which is a major energy-consuming process in a "P" steel company for improvement of heat efficiency through reduction of energy consumption. The results show optimal operation conditions and reduction of the hot stove energy cost by 15%.

Cultivating Status of Paeonia lactiflora Pallas in Central Part of Gyeong Bug Province (경북 중부지역에서의 작약 재배실태)

  • Kim, Se-Jong;Park, So-Deuk;Whang, Wheong-Baeg;Kim, Jae-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.3
    • /
    • pp.259-264
    • /
    • 1995
  • This study was carried out to find cultivation condition of peony in Euiseong district from 1994 to 1995. 1. Age distribution in cultivation of peony was from 30's to 50's and cultivated years was mainly from 5 years to 10 years, but there was more than 15 years 2. Cultivating area per house hold were 1300 pyeong average, there were moderate $400{\sim]1000$ pyeong and also those are occupied 22.6% more than 2000 pyeong. 3. The mothods of transplanting in Euiseong peony which Euiseong district was mostly divided peony but Yeongchen district used seedling stock. No. of sprout was mostly $3{\sim}4$ and planting time was mainly from Mid to Late of October. 4. The percentage of sterilization of soil and seedling stock was 77. 4%, in mulching by vinyl in tran­splanting 64. 5% in black vinyl and 25. 8% in white one. 5. Number of plant in peony planting was $3000{\sim}4000$ plant per l0a even more there was more than 8000 plant. 6. Chemical spraying time in peony field was 2 time in $1{\sim}2$ years cultivating, and $3{\sim}4$ time in $3{\sim}4$ years one. 7. Condition of fertilizer application in peony field was 40% in non-application, but $56.7{\sim}76.7%$ in 2 year to 3 years, and the time of fertilizer was mainly 3 time. 8. Drying time peony after havesting was from 12 to 24 hours by briquet stove and 24 hours by ma­chine of hot wind, also dry method of peony was mixed briquet stove and hot wind machine.

  • PDF

Studies on the Combustion of Anthracite (I). Combustion of Carbon Monoxide and the Furface (無燃炭 燃燒에 關한 硏究 (第 1 報). 一酸化炭素 燃燒反應 및 燃燒裝置)

  • Shin Byoung Sik;Shin Sei Kun
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.186-192
    • /
    • 1975
  • In the course of anthracite briquet combustion, air draft is usually controlled to continue burning of definite amount of briquet in the conventional hollow clay cylinder with air inlet hole open for given time, so that a large amount of CO tends to be produced. Therefore, it is necessary to establish an improved combustion process to depress the yielding rate of CO and for this purpose, we performed a basic experiment in which combustion rate of CO was measured in the mixture of $N_2, O_2 $and CO gas with or without the presence charcoal at the various temperature. The observed results showed that the burning temperature of CO is about 680${\sim}700^{\circ}C$, further burning rate of it was increased with increasing the amount of draft. From these facts, longer combustion time and low CO generation are thus contradictory to each other and it has been long desired to make those two compatible somehow. The purpose of the present investigation lies in designing an effective new briquet stove to meet the above requirements. The essential feature of the new briquet stove consisted in the use of two hollow iron cylinders with different inside diameter. A cylindrical air jacket thus formed served as a path through which small amount of secondary air run from the bottom of the stove to the upper vent holes. Heat exchange occurred between the upgoing secondary air and the burning briquet, which lowered the combustion temperature of the briquet. The results observed were selfevident as anticipated. It was confirmed that the combustion time was increased tolerably due to the heat loss from the combustion zone and that CO in the flue gas was reoxidized at the upper portion of the stove by the upgoing hot secondary air. By this reoxidation reaction the concentration of CO in the flue gas was found to be about 1/20 of that in case the conventional clay cylinder was used as briquet jacket.

  • PDF

An Estimation of Plant Specific Emission Factors for CO2 in Iron and Steel Industry (철강 산업의 산업공정부문 CO2 실측 배출계수 산정에 관한 연구)

  • Eom, Y.S.;Hong, J.H.;Kim, J.S.;Kim, D.G.;Lee, S.B.;Song, H.D.;Lee, S.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.50-63
    • /
    • 2007
  • The development of domestic plant specific emission factors is very important to estimate reliable national emissions management. This study, for the reason, was carried out to obtain advances emission factor for Carbon Dioxide ($CO_2$) by source-specific emission tests from the iron and steel industry sector which is well known as one of the major sources of greenhouse gases ($CO_2$). Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$. There was no good information available on $CO_2$ plant specific emission factors from the iron and steel industry in Korea so far. The major emission sources of $CO_2$ examined from the iron and steel manufacturing precesses were a hot blast stove, coke oven, sintering furnace, electric arc furnace, heating furnace, and so on. In this study, the concentration of $CO_2$ from the hot blast stove process was the highest among all processes. The $CO_2$ emission factors for a ton of Steel and Iron products (using B-C oil) were estimated to be 0.315 $CO_2$ tonne (by Tier 3 method) and 4.89 $CO_2$ tonne. In addition, emission factor of $CO_2$ for heating furnace process was the highest among all process. Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$.

Tea Utensils Represented on the Tomb Mural Paintings of Foreign Exchange Countries with Koryo Dynasty (고려 대외교류국의 고분벽화에 나타난 차구(茶具))

  • Koh, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.30 no.6
    • /
    • pp.736-749
    • /
    • 2015
  • The present study addresses the tea utensils and tea drinking methods seen in tomb mural paintings of Song, Liao, Jin, and Yuan, which were Koryo's foreign exchange countries. The paintings illustrate the pointing tea method, which was popular during dynasty times. Tea utensils observed in the paintings include a tea mill, mill stone, and tea pestle necessary for making cake tea into powder. The tea stove and boiling bottle are depicted as being required to boil water. Some mural works vividly depict how a tea drinker pours hot water from a boiling bottle into a cup with a stand, mixes it with a tea spoon, and whisks tea powder for foaming with a tea whisk. The tea drinking method of the Southern race Han is also similarly described in the tomb mural paintings of Liao, Jin, and Yuan from Northern nomads. The distribution of tea culture had an enormous influence on the development of tea utensil manufacturing methods. The significance of this study is that these findings can be used as basic data to provide food culture insights into Koryo celadon tea utensils.