• Title/Summary/Keyword: Hot gas-bypass control type

Search Result 5, Processing Time 0.009 seconds

A Comparison of Operating Characteristics for Industrial Water Cooler with Variation of Control Methods (제어방식에 따른 산업용 수냉각기의 운전 특성 비교)

  • Baek, Seung-Moon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a comparison of operating characteristics for industrial water cooler with variation control methods. The performance analysis regarding the characteristics of condensation capacity, evaporation capacity, compressor load, COP of an on-off type cooler, a hot gas-bypass control type cooler and an inverter control type cooler with respect to the system load is reviewed, respectively. The primary results are as following: the variation of required compressor load of an on-off type cooler with respect to load is 5%, that of hot gas-bypass type is 18% and 66% for an inverter control type cooler. As the result shows, an inverter control type yields relatively huge difference of required compressor load compared to other types of control system. In terms of partial load, COP of an inverter control type cooler presents the highest value, and is considered as the optimized type for the used of the system involving frequent partial load.

An Experimental Study on the Performance Characteristics of Hot-gas and Liquid Bypass Heat Pump Systems for Capacity Modulation (고온가스 및 액체 바이패스 적용 용량가변 히트펌프의 성능특성에 관한 실험적 연구)

  • Ahn, Jae Hwan;Joo, Youngju;Yoon, Won Jae;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.137-142
    • /
    • 2013
  • A small air-conditioner or chiller for a constant temperature bath normally uses a constant speed compressor. The constant speed compressor is relatively inexpensive, but it uses on/off control for capacity modulation. The on/off control has several disadvantages, specifically energy loss and large temperature fluctuation. Continuous operation with a bypass system can be an alternative to on/off control, for capacity modulation. In this study, a heat pump system having a hot-gas bypass and a liquid bypass was adopted. The performance of the bypass-type heat pump was measured, by varying the bypass valve opening. The differences of the COP between the hot-gas bypass and the liquid bypass, in the cooling and heating operations, were within 2% and 1%, respectively. The liquid bypass showed a wider range of capacity control in the cooling operation but the hot-gas bypass showed a wider range of capacity control in the heating operation.

Characteristics of On-off Control and Hot-Gas Bypass Control in an Industrial Cooler (산업용 냉각기의 온오프 제어와 토출가스 바이패스 제어 특성 비교)

  • Baek, Seung-Moon;Moon, Choon-Geun;Kim, Eun-Pil;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.429-435
    • /
    • 2011
  • In this study the operational characteristics of the temperature control system between an on-offemployed cooler and a bypass type cooler is analyzed. Currently an on-off controller employed coolerwhich is the industry's leading type on the market for industrial coolers is used. The new type cooler isused a bypass controller at discharge gas. The COP of the bypass controlled cooler with discharge gas is at least 8% higher than the on-off controlled cooler. The maximum COP difference is about 20%. Based on the results, the bypass control with discharge gas shows the possible temperature control with high precision.

Performances of Hot Gas Bypass Type Oil Cooler System (Hot Gas를 이용한 오일쿨러의 성능평가)

  • Lee, Seung-Woo;Yeom, Han-Kil;Park, Kil-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.73-80
    • /
    • 2009
  • In accordance with the trend for high-speed multi-axes, and the increasing technical sophistication of machine tools, thermal deformation has become an important factor in the accuracy of machine tools. It was analyzed that thermal deformation error accounts for about 70% of all errors made with machine tools. For precise temperature control, both cooling and heating should be implemented. A hot gas bypass type cooling cycle method has a simplified structure and temperature control accuracy to with in ${\pm}0.1^{\circ}C$. In this study, the performances of oil cooler system, including temperature controllability according to hot gas floe and preset temperature sustainability according to temperature load, were tested. It is expected that this study will contribute to the development and performances of oil cooler system, which could minimize thermal errors and improve the quality of precision machine tools.

Characteristics of Precise Temperature Control of Industrial Cooler on Thermal Load (산업용 냉각기의 열부하 변화에 대응한 정밀온도제어 특성)

  • Baek, S.M.;Choi, J.H.;Byun, J.Y.;Moon, C.G.;Jeong, S.K.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. Existing On-Off control type can't control temperature accurately because compressor is operated and stopped repeatedly and causes increment of power consumption and decrement of the expected life of compressor. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler. PI controller is designed using type of hot-gas bypass for precise control of temperature. Gain of PI is decided easily by method of critical oscillation response, excellent performance of control is shown with 4.24% overshoot and ${\pm}0.2^{\circ}C$error of steady state. Also, error range of temperature is controlled within $0.2^{\circ}C$although disturbance occurs.