• Title/Summary/Keyword: Hot Channel

Search Result 304, Processing Time 0.03 seconds

Spatial Distribution of Injected Charge Carriers in SONOS Memory Cells

  • Kim Byung-Cheul;Seob Sun-Ae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.894-897
    • /
    • 2006
  • Spatial distribution of injected electrons and holes is evaluated by using single-junction charge pumping technique in SONOS(Poly-silicon/Oxide/Nitride/Oxide/Silicon) memory cells. Injected electron are limited to length of ONO(Oxide/Nitride/oxide) region in locally ONO stacked cell, while are spread widely along with channel in fully ONO stacked cell. Hot-holes are trapped into the oxide as well as the ONO stack in locally ONO stacked cell.

  • PDF

Investigation of Literature Refered to the Animal of Anti-cancer (항암작용(抗癌作用)이 있는 동물류(動物類)에 대(對)한 문헌적(文獻的) 고찰(考察))

  • Lim, Nak-Chul;Roh, Sek-Sun;Kang, Seung-Won
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.149-176
    • /
    • 1995
  • The results were as follow: 1. In classification of the virulence of medicines, it is the virulent animal that have a deadly poison and the rest is the animal of weak nor non-toxic. 2. In classification of the channel distribution, the most is the medicine that belongs to liver channel, the next are the stomach, lung, kidney and spleen channel. 3. In classification of four characters, the most parts are cool, common and warm medicine and there is a few that is hot and cooling. 4. In classification of five tastes, the most numerous tastes are sweet and salty and the next are acrid, bitter and sour tastes. 5. In classification of the medical action, there are few medicine of invigorating vital energy, tonic therapy and astringent and a great part of the medicine are regulating vital energy and blood, removing blood stasis and mass, clearing away heat-evil and eliminating sputum, calming the river to inhibit the wind-evil and pain control. 6. In classification of the application of cancer, the most numerous disease is the liver cancer and the next are stomach cancer, esophageal cancer, lung cancer, leukemia, uterine cancer,mastitis, brain tumor.

  • PDF

An Array Antenna Calibration Algorithm Using LTE Downlink Zadoff-Chu Sequence (LTE 하향링크의 Zadoff-Chu 시퀀스를 이용한 배열 안테나 Calibration 알고리즘)

  • Sun, Tiefeng;Jang, Jae Hyun;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • Research on calibration of array antenna has become a hot spot in the area of signal processing and it is necessary to obtain the phase mismatch of each antenna channel. This paper presents a new calibration method for an array antenna system. In order to calibrate the phase mismatch of each antenna channel, we used primary synchronization signal (PSS) which exists in LTE downlink frame. Primary synchronization signal (PSS) is based on a Zadoff-Chu sequence which has a good correlation characteristic. By using correlation calculation, we can extract primary synchronization signal (PSS). After extracting primary synchronization signal (PSS), we use it to calibrate and reduce the phase errors of each antenna channel. In order to verify the new array antenna calibration algorithm which is proposed in this paper, we have simulated the proposed algorithm by using MATLAB. The array antenna system consists of two antenna elements. The phase mismatch of first antenna and second antenna is calculated accurately by proposed algorithm in the experiment test. Theory analysis and MATLAB simulation results are shown to verify the calibration algorithm.

A Study on the LRE Thrust Chamber Regenerative Cooling Design (액체로켓엔진 추력실의 재생냉각 기관 설계)

  • Kim, Ji-Hoon;Park, Hee-Ho;Kim, Yoo;Hwang, Soo-Kwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.25-35
    • /
    • 2002
  • A calculation procedure for designing LRE regenerative cooling system is introduced. In LRE thrust chamber, heat is transfered from the hot gas to the wall by convection and radiation, then conduction through the wall and finally convection to the liquid coolant. A cooling channel is designed on the basis of heat transfer rate calculated by using criterial method and integral method. The result is compared with existing Russian cooling channel design code. Also a design logic and quantitative effect of various parameters were introduced to help better understanding for those who is not familiar to LRE system.

Effects of flow direction on the performance of an indirect evaporative cooler (유동 방향이 간접 증발식 냉각기 성능에 미치는 영향)

  • Choo, Hyun-Seon;Lee, Kwan-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.743-748
    • /
    • 2006
  • Ren et al. analyzed the performance of the indirect evaporative cooler according to the direction of the flow considering evaporation water flow and wetness. However the effect of NTU of each channel on the performance of the indirect evaporative cooler according to the direction of the flow was not analyzed exactly. In this study the effect of the direction of the flow on the Indirect evaporative cooling performance changing NTU of each channel are investigated theoretically. The cooling process of the indirect evaporative cooler by flow direction is modeled into a set of linear differential equations and solved to obtain the exact solutions to the temperatures of the hot fluid, the moist air, and evaporation water. Based on the exact solution in the case of different NTU of each channel, we study the change of the distribution of the temperature according to each flow direction and at the same time analyze the effect of the flow direction on the cooling performance.

  • PDF

Regenerative Cooling Channel Design of a Supersonic Combustor Considering High-Temperature Property of Fuel (연료 고온물성을 고려한 초음속 연소기 재생냉각 유로 설계)

  • Yang, Inyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.37-46
    • /
    • 2018
  • A design study on the cooling channel configuration in a regeneratively cooled supersonic combustor was performed. The flow parameters on the hot- and cold-side channels were calculated using a quasi-one-dimensional model. The heat transfer between these two sides was estimated as a part of the flow calculation. For the reference configuration, the total amount of heat exchanged was 10.7 kW, the heat flux was $566kW/m^2$, and the fuel temperature increase between the inlet and outlet was 153 K. Seven designs of the heat exchanger channel were compared for their heat transfer performance.

Design of Low Power Optical Channel for DisplayPort Interface (저전력 광채널용 디스플레이포트 인터페이스 설계)

  • Seo, Jun-Hyup;Park, In-Hang;Jang, Hae-Jong;Bae, Gi-Yeol;Kang, Jin-Ku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.58-63
    • /
    • 2013
  • This paper presents a transceiver design for DisplayPort interface using an optical channel. By converting the electronic channel to the optical channel, the DisplayPort's main channel can provide a high-speed data transmission for long distance. The design converting the electronic channel to the optical channel in the main channel and AUX channel of the DisplayPort is presented in this paper. Futhermore, the HPD signal transmission by using AUX channel is proposed. In order to minimize power consumption, this paper also proposed a method of controlling the TX block in the main link. The proposed system is designed by a FPGA and an optical module. The FPGA used 651 ALUT(adaptive look-up table)s, 511 resisters and 324 block memory bits. The maximum operating rate of the FPGA is 250MHz. With the proposed power control scheme, 740mW of power dissipation reduction can be achieved at the main link optical TX module.

A Study on Design Automation of Cooling Channels in Hot Form Press Die Based on CATIA CAD System (CATIA CAD 시스템 기반 핫폼금형의 냉각수로 설계 자동화에 관한 연구)

  • Kim, Gang-Yeon;Park, Si-Hwan;Kim, Sang-Kwon;Park, Doo-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This paper focuses on the development of a support system that can rapidly generate the design data of a hot-form die with cooling channels, commonly known as hot stamping technology. We propose a new process for designing hot-form dies based on our (automated) system, whose main features are derived from the analysis of the design requirements and design process in the current industry. Our design support system consists of two modules, which allow for the generation of a 3D geometry model and its 2D drawings. The module for 3D modeling automation is implemented as a type of CATIA template model based on CATIA V5 Knowledgeware. This module automatically creates a 3D model of a hot-form die, including the cooling channels, that depends on the shape of the forming surface and the number of STEELs (subsets of die product) and cooling channels. It also allows for both the editing of the positions and orientations of the cooling channels and testing for the purpose of satisfying the constraints on the distance between the forming surface and cooling channels. Another module for the auto-generation of the 2D drawings is being developed as a plug-in using CAA (CATIA SDK) and Visual C++. Our system was evaluated using the S/W test based on a user defined scenario. As a result, it was shown that it can generate a 3D model of a hot form die and its 2D drawings with hole tables about 29 times faster than the conventional manual method without any design errors.

Study on the Design Parameters of a Heat Exchange Steam Reformer (HESR) using CFD (전산유체해석을 이용한 열교환형 수증기 개질기의 디자인 파라미터 연구)

  • YANG, CHANUK;LEE, YULHO;PARK, SANGHYUN;YANG, CHOONGMO;PARK, SUNGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • In this study, CFD model for a Heat Exchange Steam Reformer (HESR) used for a 10kW SOFC system is developed for the design optimization of the HESR. The model is used to explore the effect of design parameters on the performance of the HESR. In the HESR, heat is delivered from the hot gas channel to the fuel channel to supply the heat required for the fuel reforming. In the fuel channel where the fuel is reformed, thermo-fluid dynamics, heat transfer, and chemical reaction are considered to predict the performance of the reformer. The model is validated with experimental data within 2~3% error. The validated model is used for the parametric study of the HESR design. Channel length, channel diameter, and flow direction are selected as the design parameters. The effects of the HESR design parameters on the outlet temperature, outlet H2 mole fraction, and pressure drop across the reformer are presented using the model.