낸드 플래시 메모리는 구조적으로 쓰기 전 지우기(Erase-Before-Write) 동작이 요구된다. 이것을 해결하기 위해서는 데이터 업데이트 동작이 빈번히 발생하는 페이지(Hot data page)를 구분하여 별도에 블록에 저장함으로 해결할 수 있으며 이러한 Hot data를 분류하는 기법을 핫 데이터 판단기법이라 한다. MHF(Multi Hash Function Framework)기법은 데이터 갱신요청의 빈도를 시스템 메모리에 기록하고 그 기록된 값이 일정 기준 이상일 때 해당 데이터 갱신요청을 Hot data로 판단한다. 하지만 데이터 갱신요청에 빈도만을 단순히 카운트하는 방법으로는 정확한 Hot data로 판단에 한계가 있다. 또한 데이터 갱신요청의 지속성을 판단 기준으로 하는 기법의 경우 갱신요청 사실을 시간 간격을 기준으로 순차적으로 기록한 뒤 Hot data로 판단하는 방법이다. 이러한 지속성을 기준으로 하는 방법의 경우 그 구현과 운용이 복잡한 단점이 있으며 갱신요청에 빈도를 고려하지 않는 경우 부정확하게 판단되는 문제가 있다. 본 논문은 데이터 갱신요청에 빈도와 지속성을 함께 고려한 경량화된 핫 데이터 판단기법을 제안한다.
플래시 메모리에서 읽기 작업은 속도도 빠르고 제약이 없으나 데이터 변경 시에는 덮어쓰기(overwrite)가 되지 않아 해당 데이터를 새로운 영역에 쓰고 이전에 존재하던 데이터는 무효 시켜야한다. 무효화시킨 데이터는 가비지컬렉션을 통해 지움 연산을 수행해야 한다. 지역 접근성을 가지는 데이터에 대해 가비지컬렉션을 통해 클리어 시킬 대상 목록을 선정할 때 cost-benefit 방법을 사용하면 성능은 좋으나 wear-leveling이 나빠지는 문제점이 있다. 본 연구에서는 wear-leveling을 개선하기 위해 플래시 메모리를 hot 데이터 그룹들과 cold 데이터 그룹들의 다수의 그룹으로 분할한 후 데이터를 배치하고 주기적으로 hot 데이터 영역과 cold 데이터 영역을 교체함으로써 wear-leveling과 성능을 개선하였다.
낸드 플래시 메모리는 블록에 새로운 데이터를 쓰고자 할 때 삭제 연산이 선행되어야 하며 일정 횟수 이상 지움 연산이 반복된 블록은 더 이상 사용이 불가능하다. 데이터의 갱신이 빈번한 핫 데이터는 블록을 빠르게 사용 불가능한 상태에 도달하게 만들 수 있고 이로써 낸드 플래시 메모리의 용량은 시간이 지남에 따라 감소할 수 있다. 본 논문에서는 데이터의 접근 패턴을 고려해 핫 데이터와 콜드 데이터를 분류하는 알고리즘을 제시한다. 이렇게 분류된 데이터 정보를 이용해 삭제 횟수가 많은 블록에 갱신 확률이 적은 콜드 데이터를, 삭제 횟수가 상대적으로 적은 블록에 갱신 확률이 높은 핫 데이터를 맵핑한다. 입력 데이터 패턴을 이용한 핫/콜드 데이터 분류 기법이 기존의 분류 기법을 사용했을 때보다 플래시 메모리의 블록 사용이 균일한 것을 실험을 통해 확인하였다.
플래시 메모리는 디스크와는 달리 덮어쓰기가 불가능하므로, 새로운 데이터는 새로운 영역에 갱신이 된다. 데이터가 빈번히 변경되면 새로운 영역을 확보하기 위해 가비지 컬렉션을 통하여 데이터를 지우게 되는데, 이때 지움(erase) 연산을 수행 할 수 있는 회수가 플래시 메모리의 특성에 의해 일정 회수로 제한을 받게 되므로 플래시 메모리의 모든 블록은 고르게 쓰여지고 지워져야 한다. 그러나 지역 접근성을 가지는 데이터를 Cost-benefit 방법으로 처리하면 성능은 좋으나 wear-leveling은 매우 나빠지는 문제점이 있다. 본 논문에서는 wear-leveling을 개선하기 위해 멀티 뱅크에서 하나의 뱅크는 cold 데이터를 다른 뱅크는 hot 데이터를 할당하고, 시간이 흐름에 따라 일정주기로 cold 뱅크와 hot 뱅크를 교환하는 CB-MB(Cost Benefit between Multi Bank) 방법을 제안하고 성능을 평가하였다. CB-MB방법은 hot 데이터와 cold 데이터를 블록단위로 분리하여 관리하는 Cost-benefit방법에 비해 성능에 있어 30% 성능향상을 보이고 wear-leveling측면에서 1/3이하로 표준편차를 줄였다.
모바일 컴퓨팅 분야에서 사용되는 저장장치는 저전력, 경량화, 내구성 등을 갖추어야 하며 사용자에 의해 생성되는 대용량 데이터를 효과적으로 저장 및 관리할 수 있어야 한다. 낸드 플래시 메모리는 모바일 컴퓨팅 분야에서 저장장치로 주로 사용되고 있다. 낸드 플래시 메모리는 구조적 특징 때문에 데이터 갱신요청 시 제자리 덮어쓰기가 불가능하여 데이터 갱신요청이 자주 발생하는 요청과 그렇지 않은 요청을 정확히 구분하여 각 블록에 저장 및 관리함으로써 해결할 수 있다. 이러한 데이터 갱신요청에 분류기법을 핫 데이터 식별 기법이라고 하며 현재 다양한 연구가 진행되었다. 본 논문은 더 정확한 핫 데이터 검증을 위해 카운팅 필터를 사용하여 데이터 갱신요청 발생을 연속적으로 기록하고 또한 특정 시간 동안 요청된 갱신요청이 얼마나 자주 발생하는지를 고려하여 핫 데이터를 검증한다.
최근 대규모 데이터의 처리와 관리를 위한 분산 저장 및 처리 시스템의 연구 및 활용이 중요해지고 있다. 대표적인 분산 저장 및 처리 프레임워크로써 하둡(Hadoop)이 널리 활용되고 있다. 하둡 분산 파일 시스템을 기반으로 수행되는 맵-리듀스 에서의 태스크 할당은 데이터의 지역성(locality)를 고려하여 최대한 가깝게 할당한다. 하지만 맵-리듀스 에서의 데이터 분석 작업에서 작업 형태에 따라 빈번하게 요청되는 데이터가 존재한다. 이러한 경우, 해당 데이터의 낮은 지역성으로 인해 수행시간 증가 및 데이터 전송의 지연의 문제점을 야기 시킨다. 본 논문에서는 맵-리듀스의 처리 속도 향상을 위한 데이터 접근 패턴에 따른 핫-데이터 복제 기법을 제안한다. 제안하는 기법에서는 데이터 접근 패턴에 따라 높은 접근 빈도를 보이는 핫-데이터에 대한 복제본 최적화 알고리즘을 활용하여 데이터 지역성을 향상시키고 결과적으로 작업 수행시간을 감소시킨다. 성능평가 결과, 기존 기법에 비해 접근 빈도의 부하가 감소하는 것을 확인하였다.
디스크에서는 데이터가 변경되면 해당 영역에 겹쳐 쓰기를 수행하나 플래시 메모리에서는 겹쳐 쓰기가 수행되지 않아 데이터가 변경될 때 새로운 영역에 데이터를 갱신한다. 따라서 이전의 데이터는 쓸모없는 데이터가 되기 때문에 가비지 컬렉션을 통해 지움 연산을 수행하여 새로운 영역을 확보하게 된다. 지움(erase) 연산을 수행할 수 있는 회수가 플래시 메모리의 특성에 의해 일정 회수로 제한을 받게 되므로 플래시 메모리의 모든 블록은 고르게 쓰여 지고 지워져야 한다. 본 논문은 지역성을 가지는 접근에서 wear-leveling을 개선하기 위한 방법으로 hot 데이터와 cold 데이터를 서로 다른 뱅크에 저장하고 시간이 흐름에 따라 일정주기로 cold 뱅크와 hot 뱅크를 교환하는 CB-MB(Cost Benefit between Multi Bank) 방법을 제안하고 성능을 평가하였다. CB-MB는 uniform한 작업부하에 대해서는 다른 방법들과 유사한 성능을 보이는 반면 접근 지역성을 가지는 작업부하에 대해서는 상대적으로 월등한 성능을 제공하는 것으로 분석되었다.
플래시 메모리는 데이터 변경 시에 덮어쓰기가 되지 않아 해당 데이터를 새로운 영역에 쓰기 이전에 존재하던 데이터는 무효화시켜야 하고 가비지 컬렉션 시 소거해야 한다. 플래시 메모리의 빠른 발전속도에 힘입어 플래시메모리의 용량은 급속도로 증가하고 있다. 플래시 메모리의 용량이 대용량화됨에 따라 소거대상 블록을 선택할 때 전체 플래시 메모리를 대 상으로 탐색을 실시하면 CPU의 수행시간이 많이 증가하는 문제점이 있다. 이 단점을 개선하기 위해 플래시 메모리를 그룹으로 분할하여 관리하고 소거대상 블록을 선택할 때 해당 그룹을 대상으로 탐색을 수행한다. 접근 지역성을 가지는 작업부하에 대해 hot 데이터는 hot 그룹에 배치하고, cold 데이터는 cold 그룹에 배치하여 그룹 내에서의 wear-leveling을 개선하고, 주기적으로 hot 그룹의 역할과 cold 그룹의 역할을 교환하여 전체플래시 메모리의 wear-leveling과 성능을 개선하였다.
인기 검색어 리스트는 현재 가장 인기 있는 검색어의 순위를 보여주는 서비스로서 네이버와 같은 포털사이트가 제공한다. 이 리스트에서의 순위 변화는 특정 검색어에 대한 사람들의 관심의 변화를 반영한다. 본 논문은 인기 검색어의 순위 변화를 예측하기 위해 시계열 모델링 프레임워크를 제안한다. 제안한 프레임워크는 과거 순위와 기계학습 모델이 적용되었고, 여기서 해결해야 할 두 가지 문제점이 있다. 첫째, 과거 순위 데이터를 분석한 결과, 70% 이상의 검색어가 리스트에서 소멸 후 재출현하는 현상을 보였다. 소멸 후의 순위는 손실 값으로 볼 수 있으며, 이를 해결하기 위해서 다양한 처리 방법을 적용하였다. 둘째, 과거 순위 데이터는 시계열 데이터이므로 최적 윈도우 크기를 계산하는 것이 중요하다. 본 논문에서는 최적 윈도우 크기는 동일한 검색어들이 서로 다른 두 시점에서 내용상 의미가 달라지는 최단 소멸기간으로 볼 수 있음을 밝혔다. 성능 평가를 위해서 4가지의 기계학습 기법과 2년 동안 수집한 네이버, 다음, 네이트의 인기 검색어 리스트 데이터를 사용하였다.
이동통신시스템에서 Warm standby sharing에 비하여 Hot standby sharing은 데이터 손실이 없고 오류 데이터가 확산되지 않는 등의 다수의 장점을 갖지만 동기화 문제로 인하여 이를 시스템에 실제로 구현하는 것은 어렵다. 따라서 본 연구에서는 Hot standby sharing에 비하여 기존의 Warm standby sharing이 갖는 동기화의 장점에 데이터 손실 및 거짓 데이터의 확산 문제를 개선할 수 있는 이중화 프로세서에 대한 마코프 모델을 설계하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.