• Title/Summary/Keyword: Host-virus interactions

Search Result 51, Processing Time 0.027 seconds

Identification of a Cellular Protein Interacting with Murine Retrovirus Gag Polyproteins

  • Choi, Wonja
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.311-315
    • /
    • 1996
  • The retroviral Gag polyprotein directs the assembly of virion particles and plays an important role in some events after entry into a host cell. The Gag polyprotein of a virus mixture is responsible for inducing murine acquired immunodeficiency syndrome (MAIDS) when injected into susceptible strains of mice. In order to identify the host cellular proteins which interact with the MAIDS virus Gag proteins and possibly mediate the function of the Gag proteins, mouse T-cell leukemic cDNA expression library was screened using the yeast GAL4 two hybrid system. Of 11 individual positive clones, the clone Y1 was selected for the study of protein-protein interaction. Its DNA sequence revealed that it was an exact match to the murine SH3 domain-containing protein SH3P8. It is expressed as 2.4 kbp transcripts in testis at higher levels and in various tissues tested at lower levels. Glutathione S-transferase-Y1 fusion protein binds tightly to $Pr60^{def-gag}$ as well as $Pr65^{eco-gag}$.

  • PDF

Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production

  • Holkar, Somnath Kadappa;Balasubramaniam, Parameswari;Kumar, Atul;Kadirvel, Nithya;Shingote, Prashant Raghunath;Chhabra, Manohar Lal;Kumar, Shubham;Kumar, Praveen;Viswanathan, Rasappa;Jain, Rakesh Kumar;Pathak, Ashwini Dutt
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.536-557
    • /
    • 2020
  • Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.128-137
    • /
    • 2014
  • Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

Genealogical Diversity of Endogenous Retrovirus in the Jawless Fish Genome

  • Song Jing;Wei Jie;Ma Yongping;Sun Yan;Li Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1412-1419
    • /
    • 2023
  • Retroviral integration into ancient vertebrate genomes left traces that can shed light on the early history of viruses. In this study, we explored the early evolution of retroviruses by isolating nine Spuma endogenous retroviruses (ERVs) and one Epsilon ERV from the genomes of Agnatha and Chondrichthyes. Phylogenetic analysis of protein sequences revealed a striking pattern of co-evolution between jawless fish ERV and their host, while shark ERV underwent ancient cross-class viral transmission with jawless fish, ray-finned fish, and amphibians. Nucleotide sequence analysis showed that jawless fish ERV emerged in the Palaeozoic period, relatively later than ray-finned fish ERV. Moreover, codon analysis suggested that the jawless fish ERV employed an infection strategy that mimics the host codon. The genealogical diversity of ERVs in the jawless fish genome highlights the importance of studying different viral species. Overall, our findings provide valuable insights into the evolution of retroviruses and their interactions with their hosts.

Recessive Resistance: Developing Targets for Genome Editing to Engineer Viral Disease Resistant Crops (바이러스 열성 저항성: 병저항성 작물 개발을 위한 유전자 교정 소재 발굴 연구의 동향)

  • Han, Soo-Jung;Heo, Kyeong-Jae;Choi, Boram;Seo, Jang-Kyun
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.49-61
    • /
    • 2019
  • Plant viruses are among the important pathogens that cause severe crop losses. The most efficient method to control viral diseases is currently to use virus resistant crops. In order to develop the virus resistant crops, a detailed understanding of the molecular interactions between viral and host proteins is necessary. Recessive resistance to a pathogen can be conferred when plant genes essential in the life cycle of a pathogens are deficient, while dominant resistance is mediated by host resistance (R) genes specifically interacting with effector proteins of pathogens. Thus, recessive resistance usually works more stably and broadly than dominant resistance. While most of the recessive resistance genes have so far been identified by forward genetic approaches, recent advances in genome editing technologies including CRISPR/Cas9 have increased interest in using these technologies as reverse genetic tools to engineer plant genes to confer recessive resistance. This review summarizes currently identified recessive resistance genes and introduces reverse genetic approaches to identify host interacting partner proteins of viral proteins and to evaluate the identified genes as genetic resources of recessive resistance. We further discuss recent advances in various precise genome editing technologies and how to apply these technologies to engineer plant immunity.

Arabidopsis thaliana Remorins Interact with SnRK1 and Play a Role in Susceptibility to Beet Curly Top Virus and Beet Severe Curly Top Virus

  • Son, Seungmin;Oh, Chang Jae;An, Chung Sun
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.269-278
    • /
    • 2014
  • Remorins, a family of plant-specific proteins containing a variable N-terminal region and conserved C-terminal domain, play a role in various biotic and abiotic stresses, including host-microbe interactions. However, their functions remain to be completely elucidated, especially for the Arabidopsis thaliana remorin group 4 (AtREM4). To elucidate the role of remorins in Arabidopsis, we first showed that AtREM4s have typical molecular characteristics of the remorins, such as induction by various types of biotic and abiotic stresses, localization in plasma membrane and homo- and hetero-oligomeric interaction. Next, we showed that their loss-of-function mutants displayed reduced susceptibility to geminiviruses, Beet Curly Top Virus and Beet Severe Curly Top Virus, while overexpressors enhanced susceptibility. Moreover, we found that they interacted with SnRK1, which phosphorylated AtREM4.1, and were degraded by the 26S proteasome pathway. These results suggest that AtREM4s may be involved in the SnRK1-mediated signaling pathway and play a role as positive regulators of the cell cycle during geminivirus infection.

Dose-Dependent Inhibition of Melanoma Differentiation-Associated Gene 5-Mediated Activation of Type I Interferon Responses by Methyltransferase of Hepatitis E Virus

  • Myoung, Jinjong;Min, Kang Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1137-1143
    • /
    • 2019
  • Hepatitis E virus (HEV) accounts for 20 million infections in humans worldwide. In most cases, the infections are self-limiting while HEV genotype 1 infection cases may lead to lethal infections in pregnant women (~ 20% fatality). The lack of small animal models has hampered detailed analysis of virus-host interactions and HEV-induced pathology. Here, by employing a recently developed culture-adapted HEV, we demonstrated that methyltransferase, a non-structural protein, strongly inhibits melanoma differentiation-associated gene 5 (MDA5)-mediated activation of type I interferon responses. Compared to uninfected controls, HEV-infected cells display significantly lower levels of $IFN-{\beta}$ promoter activation when assessed by luciferase assay and RT-PCR. HEV genome-wide screening showed that HEV-encoded methyltransferase (MeT) strongly inhibits MDA5-mediated transcriptional activation of $IFN-{\beta}$ and $NF-{\kappa}B$ in a dose-responsive manner whether or not it is expressed in the presence/absence of a tag fused to it. Taken together, current studies clearly demonstrated that HEV MeT is a novel antagonist of MDA5-mediated induction of $IFN-{\beta}$ signaling.

M Protein from Dengue virus oligomerizes to pentameric channel protein: in silico analysis study

  • Ayesha Zeba;Kanagaraj Sekar;Anjali Ganjiwale
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.41.1-41.11
    • /
    • 2023
  • The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

HCoV-IMDB: Database for the Analysis of Interactions between HCoV and Host Immune Proteins

  • Kim, Mi-Ran;Lee, Ji-Hae;Son, Hyeon Seok;Kim, Hayeon
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Coronaviruses are known respiratory pathogens. In the past, most human coronaviruses were thought to cause mild symptoms such as cold. However recently, as seen in the Severe Acute Respiratory Syndrome (SARS) and the Middle East Respiratory Syndrome (MERS), infectious diseases with severe pulmonary disease and respiratory symptoms are caused by coronaviruses, making research on coronaviruses become important. Considering previous studies, we constructed 'HCoV-IMDB (Human Corona Virus Immune Database)' to systematically provide genetic information on human coronavirus and host immune information, which can be used to analyze the interaction between human coronavirus and host immune proteins. The 'HCoV-IMDB' constructed in the study can be used to search for genetic information on human coronavirus and host immune protein and to download data. A BLAST search specific to the human coronavirus, one of the database functions, can be used to infer genetic information and evolutionary relationship about the query sequence.