Acknowledgement
Anjali Ganjiwale acknowledges research funding from SERB, Department of Science and Technology (DST-TARE) grant, TAR/2022/000483, Govt. of India. Ayesha Zeba acknowledges fellowship support from Minority Welfare Department, Govt. of Karnataka, India.
References
- Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 2002;10:100-103. https://doi.org/10.1016/S0966-842X(01)02288-0
- Perera R, Kuhn RJ. Structural proteomics of dengue virus. Curr Opin Microbiol 2008;11:369-377. https://doi.org/10.1016/j.mib.2008.06.004
- Guirakhoo F, Bolin RA, Roehrig JT. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 1992;191:921-931. https://doi.org/10.1016/0042-6822(92)90267-S
- Meng F, Badierah RA, Almehdar HA, Redwan EM, Kurgan L, Uversky VN. Unstructural biology of the Dengue virus proteins. FEBS J 2015;282:3368-3394. https://doi.org/10.1111/febs.13349
- Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, et al. Structures of immature flavivirus particles. EMBO J 2003;22:2604-2613. https://doi.org/10.1093/emboj/cdg270
- Randolph VB, Winkler G, Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology 1990; 174:450-458. https://doi.org/10.1016/0042-6822(90)90099-D
- Premkumar A, Horan CR, Gage PW. Dengue virus M protein C-terminal peptide (DVM-C) forms ion channels. J Membr Biol 2005;204:33-38. https://doi.org/10.1007/s00232-005-0744-9
- Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol 2022;145:106185.
- Nieva JL, Madan V, Carrasco L. Viroporins: structure and biological functions. Nat Rev Microbiol 2012;10:563-574. https://doi.org/10.1038/nrmicro2820
- Wong SS, Haqshenas G, Gowans EJ, Mackenzie J. The dengue virus M protein localises to the endoplasmic reticulum and forms oligomers. FEBS Lett 2012;586:1032-1037. https://doi.org/10.1016/j.febslet.2012.02.047
- Nambala P, Su WC. Role of zika virus prM protein in viral pathogenicity and use in vaccine development. Front Microbiol 2018;9:1797.
- Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bio-informatics 2007;23:2947-2948.
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-425.
- Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845-858. https://doi.org/10.1038/nprot.2015.053
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with Alpha-Fold. Nature 2021;596:583-589. https://doi.org/10.1038/s41586-021-03819-2
- Salamov AA, Solovyev VV. Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 1995;247:11-15. https://doi.org/10.1006/jmbi.1994.0116
- Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021;373:871-876. https://doi.org/10.1126/science.abj8754
- Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50:D439-D444. https://doi.org/10.1093/nar/gkab1061
- Eramian D, Eswar N, Shen MY, Sali A. How well can the accuracy of comparative protein structure models be predicted? Protein Sci 2008;17:1881-1893. https://doi.org/10.1110/ps.036061.108
- Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci 2006;15:2507-2524. https://doi.org/10.1110/ps.062416606
- Melo F, Sanchez R, Sali A. Statistical potentials for fold assessment. Protein Sci 2002;11:430-448. https://doi.org/10.1002/pro.110430
- Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins 2005;60:224-231. https://doi.org/10.1002/prot.20562
- Abraham M, Hess B, van der Spoel D, Lindahl E; GROMACS Development Team. GROMACS User Manual Version 2018. Uppsala: GROMACS Development Team, Royal Institute of Technology and Uppsala University, 2019. Accessed 2023 Apr 25. Available from: http://www.gromacs.org.
- Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013;29:845-854. https://doi.org/10.1093/bioinformatics/btt055
- Bekker H, Berendsen HJ, Dijkstra EJ, Achterop S, Vondrumen R, Vanderspoel D, et al. Gromacs: a parallel computer for molecular-dynamics simulations. In: Physics Computing '92. (DeGroot RA, Nadrchal J, eds.). Singapore: World Scientific Publishing, 1993. pp. 252-256.
- Sehnal D, Svobodova Varekova R, Berka K, Pravda L, Navratilova V, Banas P, et al. MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform 2013;5:39.
- Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 2021;61:3891-3898. https://doi.org/10.1021/acs.jcim.1c00203
- Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015;1263:243-250. https://doi.org/10.1007/978-1-4939-2269-7_19
- Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461. https://doi.org/10.1002/jcc.21334
- Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 2017;14:71-73. https://doi.org/10.1038/nmeth.4067
- Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. CHARMM general force field: a force field for druglike molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010;31:671-690. https://doi.org/10.1002/jcc.21367
- Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res 2021;49:W530-W534. https://doi.org/10.1093/nar/gkab294
- Brinda KV, Vishveshwara S. Oligomeric protein structure networks: insights into protein-protein interactions. BMC Bioinformatics 2005;6:296.
- Morris JH, Huang CC, Babbitt PC, Ferrin TE. structureViz: linking Cytoscape and UCSF Chimera. Bioinformatics 2007;23:2345-2347. https://doi.org/10.1093/bioinformatics/btm329
- Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-1612. https://doi.org/10.1002/jcc.20084
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-2504. https://doi.org/10.1101/gr.1239303
- Thomaston JL, Polizzi NF, Konstantinidi A, Wang J, Kolocouris A, DeGrado WF. Inhibitors of the M2 proton channel engage and disrupt transmembrane networks of hydrogen-bonded waters. J Am Chem Soc 2018;140:15219-15226. https://doi.org/10.1021/jacs.8b06741
- Surya W, Li Y, Torres J. Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim Biophys Acta Biomembr 2018;1860:1309-1317. https://doi.org/10.1016/j.bbamem.2018.02.017
- OuYang B, Xie S, Berardi MJ, Zhao X, Dev J, Yu W, et al. Unusual architecture of the p7 channel from hepatitis C virus. Nature 2013;498:521-525. https://doi.org/10.1038/nature12283
- Krishnappa CM, Rai P, Zeba A, Ganjiwale A. Residue interaction network analysis and molecular dynamics simulation of 6K viroporin: Chikungunya virus channel proteins. Int J Comput Biol Drug Design [Epub]. https://doi.org/10.1504/IJCBDD. 2023.10056106.
- Acharya R, Carnevale V, Fiorin G, Levine BG, Polishchuk AL, Balannik V, et al. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc Natl Acad Sci U S A 2010;107:15075-15080. https://doi.org/10.1073/pnas.1007071107
- Jimenez-Guardeno JM, Nieto-Torres JL, DeDiego ML, Regla-Nava JA, Fernandez-Delgado R, Castano-Rodriguez C, et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog 2014;10:e1004320.