• Title/Summary/Keyword: Horticultural Greenhouse

Search Result 390, Processing Time 0.034 seconds

Growth Performance of Chinese Cabbage using Soilless Cultivation Method

  • Keefe, Dimas Harris Sean;Yoon, Sangjin;Kwon, Soonhong;Kwon, Soongu;Park, Jongmin;Kim, Jongsoon;Chung, Songwon;Choi, Wonsik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Growing plant in potting media without soil is known as Soilless cultivation. This method is used mostly in greenhouse cultivation to increase horticultural commodities production. Peat moss is commonly utilized as potting media substrate because of its characteristic. However, peat moss price is high because of the quantity of peat moss in nature has been decreased. Recently, most of the research is conducted to find the alternative growing medium to cultivate horticulture plant in potting media. Perlite and rice husk ash were mentioned that had a potent as alternative growing media for seasonal plants to increase agriculture production due to the lack of production area. This research aims to determine the growth of in rice husk ash, perlite and peat moss as growing substrates. The method used was the soilless cultivation. The chinese cabbage was planted in the pot with perlite media, rice husk ash media, and peat moss media. The chinese cabbage was measured after 35 days after planting. The result showed that peatmoss was more potentials in chinese cabbage growth performance than rice husk ash and perlite. Peat moss had the significant result of every research parameters such as plant height, plant weight, number of leaves, plant diameter, root length, and root weight. The best alternative for cultivation chinese cabbage without substrate based on this research was peat moss then rice husk ash and perlite.

Effects of Orchid Mycorrhizal Fungi on the Growth of Cymbidium kanran and Phalaenopsis (난 균근균 처리가 한란과 호접란의 생육에 미치는 영향)

  • Yun, Jong Sun;Park, Kyoung Ryeo;Shin, Se Kyun;Kim, Ik Hwan;Lee, Cheol Hee;Choi, Kwan Soon;Lee, Sang Sun
    • Horticultural Science & Technology
    • /
    • v.17 no.5
    • /
    • pp.578-580
    • /
    • 1999
  • The effects of the orchid mycorrhizal fungi isolated from Cymbidium goeringii were investigated on the growth of orchid plants. The plants, a hybrid of Cymbidium kanran Jeju${\times}$C. kanran Nangoku and Phalaenopsis were inoculated with the fungal isolates of Rhizoctonia repens (P1), R. endophytica (P2) and R. repens (P3; different from P1) on the oatmeal agars for two months. Then the orchid plants were cultivated in the greenhouse for eighteen months. The difference of plant growth after cocultivation for two months was not found among the treatments. After cultivation for four months, the growth of hybrid plants of Cymbidium kanran Jeju${\times}$C. kanran Nangoku was observed to be distinguished in the Rhizoctonia repens (P1). After cultivation in the greenhouse for eighteen months, the plant height, the number of shoots, the number of leaves, the number of roots and plant fresh weight of the hybrid of Cymbidium kanran Jeju${\times}$C. kanran Nangoku, inoculated with Rhizoctonia repens (P1), were significantly increased compared to those of the control. The plants inoculated with Rhizoctonia repens (P3) were not different and the plants inoculated with R. endophytica were poor compared to the control. The plant height and fresh weight of the Phalaenopsis, inoculated with Rhizoctonia repens (P1), increased significantly compared to those of the control. Overall, Rhizoctonia repens (P1), was the most effective for the growth of a hybrid of Cymbidium kanran Jeju${\times}$C. kanran Nangoku.

  • PDF

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Lee, Jae-Su;Hong, Seung-Gil;Lee, Gong-In;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.

Comparing Photosynthesis, Growth, and Yield of Paprika (Capsicum annuum L. 'Cupra') under Supplemental Sulfur Plasma and High-Pressure Sodium Lamps in Growth Chambers and Greenhouses (황 플라즈마 및 고압나트륨 램프의 보광에 따른 생육상 및 온실에서의 파프리카 광합성 및 생산성 비교)

  • Park, Kyoung Sub;Kwon, Dae Young;Lee, Joon Woo;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2018
  • Supplemental lighting with artificial light sources is a practical method that enables normal growth and enhances the yield and quality of fruit vegetable in greenhouses. The objective of this study was to investigate the effect of sulfur plasma lamp (SP) and high-pressure sodium lamp (HPS) as supplemental lighting sources on the growth and yield of paprika. For investigating the effectiveness of SP and HPS lamps on paprika, the effects of primary lighting on plant growth were compared in growth chambers and those of supplemental lighting were also compared in greenhouses. In the growth chamber, plant height, leaf area, stem diameter, number of leaves, fresh weight, and dry weight were measured weekly at SP and HPS from 2 weeks after transplanting. In the greenhouse, no supplemental lighting (only sunlight) was considered as the control. The supplemental lights were turned on when outside radiation became below $100W{\cdot}m^{-2}$ from 07:00 to 21:00. From 3 weeks after supplemental lighting, the growth was measured weekly, while the number and weight of paprika fruits measured every two weeks. In the growth chamber, the growth of paprika at SP was better than at HPS due to the higher photosynthetic rate. In the greenhouse, the yield was higher under sunlight with either HPS or SP than sunlight only (control). No significant differences were observed in plant height, number of node, leaf length, and fresh and dry weights between SP and HPS. However, at harvest, the number of fruits rather than the weight of fruits were higher at SP due to the enhancement of fruiting numbers and photosynthesis. SP showed a light spectrum similar to sunlight, but higher PAR and photon flux sum of red and far-red wavelengths than HPS, which increased the photosynthesis and yield of paprika.

Effects of Local Cooling and Root Pruning on Budding and Local Heating on Heating Energy Consumption in Forcing Cultivation of Strawberry (딸기 촉성재배 시 국소 냉방 및 단근처리와 국소난방이 화방출뢰와 난방에너지소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Suk Won;Paek, Yee;Moon, Jong Pil;Jang, Jae Kyung;Oh, Sung Sik
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.46-54
    • /
    • 2019
  • Experiments of local cooling and heating on crown and root zone of forcing cultivation of strawberry 'Seolhyang' using heat pump and root pruning before planting were conducted. During the daytime, the crown surface temperature of the crown local cooling treatment was maintained at $18{\sim}22^{\circ}C$. This is suitable for flower differentiation, while those of control and root zone local cooling treatment were above $30^{\circ}C$. Budding rate of first flower clusters and initial yields were in the order of crown local cooling, root zone local cooling and control in root pruning plantlet and non pruning plantlet, except for purchase plantlet. Those of root pruning plantlet were higher than those of non pruning plantlet. These trends were evident in the yield of the first flower cluster until February 14, 2018, and the effect of local cooling and root pruning decreased from March 9, 2018. The budding rates of the second flower cluster according to the local cooling and root pruning treatments were not noticeable compared to first flower cluster but showed the same tendency as that of first flower cluster. In the heating experiment, root zone local heating(root zone $20^{\circ}C$+inside greenhouse $5^{\circ}C$) and crown local heating(crown $20^{\circ}C$+inside greenhouse $5^{\circ}C$) saved 59% and 65% of heating fuel, respectively, compared to control(inside greenhouse $9^{\circ}C$). Considering the electric power consumption according to the heat pump operation, the heating costs were reduced by 55% and 61%, respectively.

Trends and Interpretation of Life Cycle Assessment (LCA) for Carbon Footprinting of Fruit Products: Focused on Kiwifruits in Gyeongnam Region (과수의 탄소발자국 표지를 위한 LCA 동향 및 해석: 경남지역 참다래를 중심으로)

  • Deurer, Markus;Clothier, Brent;Huh, Keun-Young;Jun, Gee-Ill;Kim, In-Hea;Kim, Dae-Il
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • As part of a feasibility study for introducing carbon labeling of fruit products in Korea, we explore the use of carbon footprints for Korean kiwifruit from Gyeongnam region as a case study. In Korea, the Korean Environmental Industry and Technology Institute (KEITI) is responsible for the carbon footprint labeling certification, and has two types of certification programs: one program focuses on climate change response (carbon footprint labeling analysis) and the other on low-carbon products (reduction of carbon footprints analysis). Currently agricultural products have not yet been included in the program. Carbon labeling could soon be a prerequisite for the international trading of agricultural products. In general the carbon footprints of various agricultural products from New Zealand followed the methodology described in the ISO standards and conformed to the PAS 2050. The carbon footprint assessment focuses on a supply chain, and considers the foreground and the background systems. The basic scheme consists of four phases, which are the 'goal', 'scope', 'inventory analysis', and 'interpretation' phases. In the case of the carbon footprint of New Zealand kiwifruit the study tried to understand each phase's contribution to total GHG emissions. According to the results, shipping, orchard, and coolstore operation are the main life cycle stages that contribute to the carbon footprint of the kiwifruit supply chain stretching from the orchard in New Zealand to the consumer in the UK. The carbon emission of long-distance transportation such as shipping can be a hot-spot of GHG emissions, but can be balanced out by minimizing the carbon footprint of other life cycle phases. For this reason it is important that orchard and coolstore operations reduce the GHG-intensive inputs such as fuel or electricity to minimize GHG emissions and consequently facilitate the industry to compete in international markets. The carbon footprint labeling guided by international standards should be introduced for fruit products in Korea as soon as possible. The already established LCA methodology of NZ kiwifruit can be applied for fruit products as a case study.

Influence of Post-planting Fertilizer Concentrations Supplied through Sub-irrigation in Winter Season Cultivation of Tomato on the Seedling Growth and Changes in the Chemical Properties of Root Media (저면관비 방법으로 동절기 토마토 육묘시 추비 농도가 묘 생장과 상토의 화학성 변화에 미치는 영향)

  • Park, In Sook;Shim, Chang Yong;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This research was conducted to investigate the influence of post-planting fertilizer concentrations on the growth of seedlings and changes of nutrient concentrations of media in tomato seedling production through sub-irrigation. Two root media such as peat moss (grade of 0 to 6 mm, PM06) plus perlite (grade of 1 to 2 mm (PE2)(7:3, v/v) and peat moss (grade of 5 to 15 mm, PM515) plus PE2 (7:3, v/v) were formulated and filled into 72-cell plug trays. After seeds of 'Dotaerang Dia' tomato were sown and germinated at $28^{\circ}C$, the trays were moved to greenhouse and seedlings were raised 35 days. When the cotyledons were emerged, post-planting fertilizers of 13-2-13, 15-0-15 and 20-9-20 ($N-P_2O_5-K_2O$) were applied in a sequence. The fertilizer concentrations based on N in each plug stage were differed with $25mg{\cdot}L^{-1}$ in three treatments. The fertilizer solutions were supplied when the weight of plug trays decreased to 40 to 50% compared to container capacity. The root media were collected in 1, 2, 4, and 5 weeks after sowing and were divided into top, middle, and bottom parts, then were analysed for pH, EC and macro-nutrient concentrations. The seedling growth was investigated 5 weeks after sowing. The pH and EC in PM06+PE2 was higher than those of PM515+PE2. The bottom and mid-part had higher pH and lower EC compared to upper part in each medium. The differences of EC between upper and bottom parts were around 2 times in each medium. The $NH_4-N$ and K concentrations in program 3 of PM06+PE2 showed the highest concentrations among all treatments. The $NO_3-N$ concentrations in PM06+PE2 increased gradually and this rising tendency become severe as post-planting fertilizer concentrations were elevated. The seedling growth in terms of fresh and dry weights was the highest in the treatment of program 2 in PM06+PE2 among all treatments tested. Above results indicate that the gradual increases of fertilizer concentrations from 25 to $125mg{\cdot}L^{-1}$ in plug stages 2, 3, and 4 plug stages are desirable for

Evaluation of Efficiency to Plant Growth in Horticultural Soil Applied Biochar Pellet for Soil Carbon Sequestration (토양 탄소 격리 적용을 위한 바이오차 팰렛 혼합 상토를 사용한 작물 재배 효율성 평가)

  • Shin, JoungDu;Choi, YoungSu;Choi, Eunjung;Kim, MyungSook;Heo, JeongWook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • Objective of this experiment was to evaluate efficiency of application of biochar pellet in case of application of soil carbon sequestration technology. The treatments were consisted of control as general agricultural practice method, pellet(100% pig compost), biochar pellets with mixture ratio of pig compost(9:1, 8:2, 6:4, 4:6, 2:8) for comparatives of pH, EC, $NH_4-N$ and $NO_3-N$ concentrations, and yields in the nursery bed applied biochar pellets after lettuce harvesting. The application rates of biochar pellet was 6.6g/pot regardless of their mixed rates based on recommended amount of application (330kg/10a) for lettuce cultivation. pH in the nursery bed applied different biochar pellets after lettuce harvesting was only increased in the treatment plot of pig compost pellet application, but decreased in 4:6 and 2:8 pellet application plots. However, EC was observed to be not significantly different among the treatments. $NH_4-N$ concentration was only increased in the treatment plot of pig compost pellet application, but $NO_3-N$ concentrations were decreased as compared to the control. Yields in the treatments of 9:1, 8:2 and 4:6 biochar pellet application plot were increased from 9.5% to 11.4%. Therefore, this biochar pellet application might be useful for soil carbon sequestration and greenhouse gas mitigation in the agricultural farming practices because it was appeared to be a positive effect on lettuce growth.

Removal of Air Pollutants Using Photosensitizers/Photocatalysts (감광제/광촉매에 의한 공기오염물질 제거)

  • Park, Ju-Hyoung;Ahn, Ki-Chang;Lee, Jae-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.284-293
    • /
    • 2000
  • For the artificial removal of air pollutants such as pesticides, environmental toxicants, and pathogenic microorganisms in the greenhouse or the living environment, the accelerated photodegradation and the biocidal effects of some photosensitizers (PS)/photocatalysts (PC) were tested under the sunlight and/or artificial light. The selected photosensitizers/photocatalysts included the semiconductors (PC-1 and PC-2), the oxidizers (PC-3, PC-4, PC-5 and PC-6), the aromatic ketone (PS-7) and the aromatic amine (PS-8). In the case of dichlorvos, all the photocatalysts selected showed more accelerated photodegradation than the control without photocatalysts under both the sunlight and artificial light. Whereas, only the photocatalyst PC-1 accelerated the degradation of methyl tert-butyl ether about 17 times more than the control under both the sunlight and artificial light. Procymidone was much more degraded by the photosensitizer PS-8 and the two photocatalysts (PC-1, PC-6) than by PS-7. In the preliminary experiments to diminish the population of the microorganisms in the air, the photocatalyst PC-1 added to the suspensions of Pseudomonas putida, Phytophthora capsici, and Salmonella typhimurium obviously inhibited the microbial growth under the artificial light. The photocatalyst PC-1 showed a bactericidal activity against Salmonella typhimurium spread on the nutrient broth agar medium. These results suggest that the photosensitizers/photocatalysis under the light can remove some air pollutants and hence they can be used to reduce the exposure of the workers in the horticultural facilities and/or the public in the environment to the harmful pollutants.

  • PDF

Chemical Properties of the Greenhouse Soil and Nutrient Contents in Leaves and Stems of Carnation, Lily, and Rose. (카네이션, 백합, 장미 시설재배지 토양중 양분함량 과 품종별 경엽중 양분함량)

  • Hwang, Ki-Sung;Ho, Qyo-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.247-251
    • /
    • 2000
  • This study was conducted to investigate tissue nutrient contents and salt accumulation in plastic house soils cultivating lily, rose and carnation. The soil tested had high total salts, available phosphate and exchangeable potassium. The soil cultivating rose had highest salt concentvation followed by chose of carnation and lily. Tissue nutrient contents of lily were higher than chose of carnation and rose. In comparison among cultivars, the nutrient contents were as follows; 'Snow Qeen'>'Le Reve'>'Casa Blanca' in lily; 'Marina'>'Super star'>'Mary Devor'>'Madelon' in carnation; and 'Cocktail'> 'Marina'>'Maderon' in rose. The range of the nutrient contents were: T-N: $1.66\;{\sim}2.35%$, K: $1.73{\sim}2.23%$, Zn: $2.13{\sim}6.43\;mg/kg$, Cu: $3.79{\sim}13.89\;mg/kg$ in carnation; T-N: $0.79{\sim}1.65%$, P: $0.18{\sim}0.44%$, Ca: $0.59{\sim}1.26%$, Mg: $0.21{\sim}0.46%$, Zn: $23.65{\sim}90.30\;mg/kg$, Cu: $0.99{\sim}4.62\;mg/kg$ in lily; and T-N: $0.75{\sim}1.62%$, P: $0.17{\sim}0.30%$, K: $1.60{\sim}2.91%$, Ca: $0.64{\sim}0.94%$, Zn: $24.57{\sim}48.31\;mg/kg$, Cu: $3.10{\sim}9.08\;mg/kg$ in rose. The amount of nutrients uptake per plant was high in order of: K > T-N > Ca > Mg in lily; and T-N > K > Ca > P > Mg in rose.

  • PDF