Trends and Interpretation of Life Cycle Assessment (LCA) for Carbon Footprinting of Fruit Products: Focused on Kiwifruits in Gyeongnam Region

과수의 탄소발자국 표지를 위한 LCA 동향 및 해석: 경남지역 참다래를 중심으로

  • Deurer, Markus (Production Footprints Team, Plant & Food Research) ;
  • Clothier, Brent (Production Footprints Team, Plant & Food Research) ;
  • Huh, Keun-Young (Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Jun, Gee-Ill (Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Kim, In-Hea (Production Footprints Team, Plant & Food Research) ;
  • Kim, Dae-Il (Department of Horticultural Science, Chungbuk National University)
  • ;
  • ;
  • 허근영 (경남과학기술대학교 녹색기술연구소) ;
  • 전기일 (경남과학기술대학교 녹색기술연구소) ;
  • 김인혜 (뉴질랜드 식물.식품연구소 제품발자국팀) ;
  • 김대일 (충북대학교 원예과학과)
  • Received : 2011.05.30
  • Accepted : 2011.08.30
  • Published : 2011.10.31

Abstract

As part of a feasibility study for introducing carbon labeling of fruit products in Korea, we explore the use of carbon footprints for Korean kiwifruit from Gyeongnam region as a case study. In Korea, the Korean Environmental Industry and Technology Institute (KEITI) is responsible for the carbon footprint labeling certification, and has two types of certification programs: one program focuses on climate change response (carbon footprint labeling analysis) and the other on low-carbon products (reduction of carbon footprints analysis). Currently agricultural products have not yet been included in the program. Carbon labeling could soon be a prerequisite for the international trading of agricultural products. In general the carbon footprints of various agricultural products from New Zealand followed the methodology described in the ISO standards and conformed to the PAS 2050. The carbon footprint assessment focuses on a supply chain, and considers the foreground and the background systems. The basic scheme consists of four phases, which are the 'goal', 'scope', 'inventory analysis', and 'interpretation' phases. In the case of the carbon footprint of New Zealand kiwifruit the study tried to understand each phase's contribution to total GHG emissions. According to the results, shipping, orchard, and coolstore operation are the main life cycle stages that contribute to the carbon footprint of the kiwifruit supply chain stretching from the orchard in New Zealand to the consumer in the UK. The carbon emission of long-distance transportation such as shipping can be a hot-spot of GHG emissions, but can be balanced out by minimizing the carbon footprint of other life cycle phases. For this reason it is important that orchard and coolstore operations reduce the GHG-intensive inputs such as fuel or electricity to minimize GHG emissions and consequently facilitate the industry to compete in international markets. The carbon footprint labeling guided by international standards should be introduced for fruit products in Korea as soon as possible. The already established LCA methodology of NZ kiwifruit can be applied for fruit products as a case study.

국내외 탄소발자국 연구 동향을 분석하였으며 뉴질랜드 참다래의 전과정 평가 방법의 체계를 해석하였고, 경남지역 참다래를 중심으로 과수의 탄소발자국표지 적용에 대하여 제언하였다. 제품의 탄소발자국은 일반적으로 ISO14040 시리즈, PAS 2050, GHG Protocol 등과 같은 국제표준에 따라서 평가된다. 국내 탄소발자국 표지는 한국환경산업기술원이 환경부의 위탁하에 한국 표준을 마련하고 "기후변화대응", "저탄소상품"이란 문구가 표시된 탄소성적표지를 운영하고 있지만 현재까지 농산물은 인증대상에서 제외되어 있다. 반면 영국, 스웨덴, 덴마크, 뉴질랜드 등은 농산물의 전 과정 평가를 이미 수행하고 있다. 뉴질랜드 참다래의 전과정 평가는 ISO 표준 방법들을 준용하고 ISO 표준에서 분명한 기준이 없는 경우에는 PAS 2050 표준을 준용한다. 시스템 경계는 뉴질랜드 참다래의 총 온실가스 배출량에 대한 각 단계에서의 영향을 이해하기 위해서 과원 생산에서 소비까지의 모든 전과정 단계들을 포함하였다. 전과정 평가 결과에서 총 온실가스 배출량에 대한 각 단계의 영향은 과원 생산 17%, 포장(냉장) 12%, 뉴질랜드 항구 선적 1%, 선박운송 41%, 영국 Zeebrugge에서의 재포장 3%, 대형유통점 6%, 소비 및 쓰레기처리 21%로 나타났다. 선박운송과 같은 장거리 운송은 무역에서 장애물이 될 수 있으며, 이것을 극복하기 위해서는 과원과 냉장에서 온실가스의 감축이 필요하다. 국내 산업현황 분석에 따르면 최근 참다래 수입량은 매우 빠르게 증가하고 있음에도 불구하고 참다래 재배면적과 생산량은 감소하고 있으며, 수출량도 감소하고 있다. 그 이유는 수입 농산물들에 의해서 경제적 이익이 감소하였기 때문인데, 탄소발자국 표지는 참다래뿐만 아니라 국내 과수산업의 새로운 활력을 가져올 수 있다. 과수의 국제 표준에 의한 탄소발자국 도입은 가능한 한 조속히 수행되어야 할 것이다. 본 논문에서 제시된 뉴질랜드 참다래의 전과정 평가 방법 체계는 이를 위해서 유용하게 활용될 수 있다.

Keywords

References

  1. Adisa, A. 1999. Life cycle assessment and its application to process selection, design and optimization. Chem. Eng. J. 79:1-21.
  2. Alcorn, A. 2003. Embodied energy and $CO_{2}$ coefficients for NZ building materials. Centre for Building Performance Research. Victoria Univ., Wellington, Wellington.
  3. Andersson, K., T. Ohlsson, and P. Ohlsson. 1998. Screening life cycle assessment (LCA) of tomato ketchup: A case study. J. Cleaner Prod. 6:277-288. https://doi.org/10.1016/S0959-6526(98)00027-4
  4. Anton, A., J.I. Montero, P. Munzo, and F. Castells. 2005. LCA and tomato production in Mediterranean greenhouses. Intl. J. Agr. Resources Governance Ecol. 4:102-112. https://doi.org/10.1504/IJARGE.2005.007192
  5. Audsley, E., S. Alber, R. Clift, S. Cowell, P. Crettaz, G. Gaillard, J. Hausheer, O. Jolliet, R. Kleijn, B. Mortensen, D. Pearce, E. Roger, H. Teulon, B. Weidema, and H. Van Zeijts. 1997. Harmonization of environmental life cycle assessment for agriculture: Final report. Concerted Action AIR3-CT94-2028. European Commission. DG VI Agriculture.
  6. Berlin, J. 2002. Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Intl. Dairy J. 12:939-953. https://doi.org/10.1016/S0958-6946(02)00112-7
  7. Berlin, J., U. Sonesson, and A.M. Tillman. 2007. A life cycle based method to minimize environmental impact on dairy production through product sequencing. J. Cleaner Prod. 15: 347-356. https://doi.org/10.1016/j.jclepro.2005.07.019
  8. Bovea, M.D. and J.C. Powell. 2005. Alternative scenarios to meet the demands of sustainable waste management. J. Environ. Mgt. 79:115-132.
  9. Brentrup, F., J. Kusters, H. Huhlmann, and J. Lammel. 2004a. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European J. Agron. 20:247-264. https://doi.org/10.1016/S1161-0301(03)00024-8
  10. Brentrup, F., J. Kusters, H. Kuhlmann, and J. Lammel. 2001. Application of the life cycle assessment metholodogy to agricultural production: an example of sugar beet production with different forms of nitrogen fertilizers. European J. Agron. 14:221-233. https://doi.org/10.1016/S1161-0301(00)00098-8
  11. Brentrup, F., J. Kusters, J. Lammel, P. Barraclough, and H. Huhlmann, 2004b. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology: II. The application to N fertilizer use in winter wheat production systems. European J. Agron. 20:265-279. https://doi.org/10.1016/S1161-0301(03)00039-X
  12. British Standard Institution (BSI). 2008. PAS 2050: Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. Brit. Stnds. Inst., London.
  13. Carlsson-Kanyama, A. 1998a. Climate change and dietary choices: How can emissions of greenhouse gases from food consumption be reduced? Food Policy 23:277-293. https://doi.org/10.1016/S0306-9192(98)00037-2
  14. Carlsson-Kanyama, A. 1998b. Food consumption patterns and their influence on climate change. Ambio 27:528-534.
  15. Deurer, M., B.E. Clothier, A. Pickering, and D. Cleland. 2008a. Carbon footprinting for the kiwifruit supply chain - Reduction opportunities. Plant & Food Research Contract Report to Landcare Research, Auckland.
  16. Deurer, M., B.E. Clothier, A. Pickering, R. McDonald, and M. Piquet. 2008b. Carbon footprinting for the wine supply chain - Reduction opportunities. Plant & Food Research Contract Report to Landcare Research, Auckland.
  17. Deurer, M., B.E. Clothier, R. McDonald, and C.W. Van den Dijssel. 2010. Greenhouse gas footprinting and berryfruit production - Reduction opportunities. Plant & Food Research Contract Report to Landcare Research, Auckland.
  18. Deurer, M., B.E. Clothier, R. McDonald, M. Piquet, and J.T.S. Walker. 2009. Carbon footprinting for the apple supply chain - Reduction opportunities. Plant & Food Research Contract Report to Landcare Research, Auckland.
  19. Ecoinvent. 2007. Ecoinvent Database v.2.01. Swiss Centre for Life Cycle Inventories. www.ecoinvent.org.
  20. Edward-Jones, G., K. Plassman, E.H. York, B. Hounsome, D.L. Jones, and L. Mila i Canals. 2009. Vulnerability of exporting nations to the development of a carbon label in the United Kingdom. Environ. Sci. Policy 12:479-490. https://doi.org/10.1016/j.envsci.2008.10.005
  21. Ekvall, T. and G. Finnveden. 2001. Allocation in ISO14041 - A critical review. J. Cleaner Prod. 9:197-208. https://doi.org/10.1016/S0959-6526(00)00052-4
  22. European Commission-Joint Research Center (EU-JRC). 2010. International reference life cycle data system (ILCD) Handbook - general guide for life cycle assessment - detailed guidance. EUR 24708 EN. Publications Office of the European Union, Luxembourg.
  23. Finkbeiner, M., A. Inaba, R.B.H. Tan, K. Christiansen, and H.J. Kluppel. 2006. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Intl. J. Life Cycle Assessment 11:80-85. https://doi.org/10.1065/lca2006.02.002
  24. Gyeongsangnam-do Agricultural Research & Extension Services (GARES). 2011. www.knrda.go.kr.
  25. Green, S.R., S. Sivakumaran, C. Van den Dijssel, T.M. Mills, P. Blattmann, W.P. Snelgar, M.J. Clearwater, and M. Judd. 2007. A water and nitrogen budget for 'Hort16a' kiwifruit vines. Acta Hort. 753:527-534.
  26. Growcom, A.J.E. 2008. Vegetable industry carbon footprint scoping study. Horticulture Australia Ltd., Sydney.
  27. Hass, G., F. Whtterich, and U. Kopke. 2001. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agr. Ecosystems Environ. 83:43-53. https://doi.org/10.1016/S0167-8809(00)00160-2
  28. Henningsson, S., K. Hyde, A. Smith, and M. Campbell. 2004. The value of resource efficiency in the food industry: A waste minimization project in East Anglia, UK. J. Cleaner Prod. 12:505-512. https://doi.org/10.1016/S0959-6526(03)00104-5
  29. Huh, K.Y., M. Deurer, S. Sivakumaran, K. McAuliffe, and N.S. Bolan. 2008. Carbon sequestration in urban landscapes: The example of a turfgrass system in New Zealand. Austral. J. Soil Res. 46:610-616. https://doi.org/10.1071/SR07212
  30. International Organization for Standardization (ISO). 1997. ISO 14040 Environmental Management - Life Cycle Assessment - Principles and Framework. ISO, Geneve.
  31. International Organization for Standardization (ISO). 2006. ISO 14040:2006(E) Environmental Management - Life Cycle Assessment - Principles and Framework. ISO, Geneve.
  32. International Panel on Climate Change (IPCC). 2001. Climate change 2001: The scientific basis, p. 944. In: J.T. Houghton, Y. Ding, D.J. Griggs, M.P. Noguer. J. Van der Linden, and D. Xiaosu (eds.). Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge Univ. Press, Cambridge.
  33. Itsubo, N. and A. Inaba. 2003. A new LCIA method: LIME has been completed. Intl. J. Life Cycle Assessment 8:305. https://doi.org/10.1007/BF02978923
  34. Janulis, P. 2004. Reduction of energy consumption in biodiesel fuel life cycle. Renewable Energy 29:861-871. https://doi.org/10.1016/j.renene.2003.10.004
  35. Kim, C.G., J.K. Jang, H.M. Kwon, and J.J. Nam. 2009. Policy implications and directions for introducing carbon labeling system in Korean agriculture. Policy Study Issue P121 of Korean Rural Economic Institute, Seoul.
  36. Kim, C.G., Y.H. Kim, and H.G. Jung. 2010. Actual conditions of carbon emission trading system management in agricultural industries of advanced countries. Korean Rural Economic Institute, Seoul.
  37. Kim, I. 2009. The necessity and trends of carbon labeling as the response of climate change. Global Green Growth Policy 10:1-14.
  38. Kim, K.H. 2011. The trends and prospects of carbon labeling in Korea and the advanced countries. Global Green Growth Policy 39:1-16.
  39. Kim, S. and B.E. Dale. 2005. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenergy 29:433-439.
  40. Kim, W.S. 2006. A preliminary goal-setting and implementing strategies for reducing greenhouse gas emissions in Seoul. Seoul Dev. Inst. p. 3-4.
  41. Korea Rural Economic Institute (KREI). 2011. www.krei.re.kr.
  42. Korean Environmental Industry and Technology Institute (KEITI). 2011. www.edp.or.kr.
  43. Krozer, Y. 2008. Life cycle costing for innovations in product chains. J. Cleaner Prod. 16:310-321. https://doi.org/10.1016/j.jclepro.2006.07.040
  44. Kwon, Y.D. 2009. Counterplans of Gyeongnam agricultural industry against climate change. Issue paper of Gyeongnam Development Institute, Changwon.
  45. Kwon, Y.D. 2010. Challenges and counterplans of Gyeongnam agricultural industry and villages for low carbon and green growth. Gyeongnam Development Institute, Changwon.
  46. Life Cycle Assessment (LCA) Food. 2001. The environmental impact of food from origin to waste: interim report from LCA food project. LRF The Federation of Swedish Farmers, Stockholm.
  47. Lindeijer, E. 2000. Biodiversity and life support impacts of land use in LCA. J. Cleaner Prod. 8:313-319. https://doi.org/10.1016/S0959-6526(00)00025-1
  48. Lundie, S. and G.M. Peters. 2005. Life cycle assessment of food waste management options. J. Cleaner Prod. 13:275-286. https://doi.org/10.1016/j.jclepro.2004.02.020
  49. Mattsson, B. 1999. Environmental life cycle assessment of organic and integrated production of carrot puree, p. 45-53. In: B. Mattsson (ed.). 'Environmental Life Cycle Assessment (LCA) of Agricultural food production. PhD Diss., Swedish Univ. Agr. Sci., Alnarp.
  50. Mattsson, B. and M. Stadig. 1999. Screening life cycle assessment of organic and conventional production of a cereal based baby food product, p. 68-91. In: B. Mattsson (ed.). 'Environmental Life Cycle Assessment (LCA) of Agricultural food production, PhD Diss., Swedish Univ. Agr. Sci., Alnarp.
  51. Mattsson, B., C. Cederberg, and L. Blix. 2000. Agricultural land use in life cycle assessment (LCA): Case studies of three vegetable oil crops. J. Cleaner Prod. 8:283-292. https://doi.org/10.1016/S0959-6526(00)00027-5
  52. McLaren, S.J., A. Smith, and N. Mithraratne. 2008. Carbon footprinting for the kiwifruit supply chain - Report on implementation. MAF, Wellington.
  53. Mila i Canals, L., C.M. Burnip, and S.J. Cowell. 2006. Evaluation of the environmental impacts of apple production using Life Cycle Assessment (LCA): Case study in New Zealand. Agr. Ecosystems Environ. 111:226-238.
  54. Mila i Canals, L., J. Romanya, and S.J. Cowell. 2007a. Method for assessing impacts on life supporting functions (LSF) related to the use of 'fertile land' in Life Cycle Assessment (LCA). J. Cleaner Prod. 15:1426-1440. https://doi.org/10.1016/j.jclepro.2006.05.005
  55. Mila i Canals, L., S.J. Cowell, S. Sim, and L. Basson. 2007b. Comparing domestic versus imported apples: A focus on energy use. Environ. Sci. and Pollution Res. 14:338-344. https://doi.org/10.1065/espr2007.04.412
  56. Mila i Canals, L. 2007. LCA methodology and modeling considerations for vegetable production and consumption. Univ. Surrey, Guildford.
  57. Ministry of Economic Development (MED). 2007. Energy greenhouse gas emissions 1990-2005. Ministry of Econ. Dev., Wellington.
  58. Nielson, P.H., A.M. Nielson, B.P. Weidema, R. Dalgaard, and N. Halberg. 2003. LCA Food Database. www.lcafood.dk.
  59. Reardon, T., S. Henson, and J. Berdegue. 2007. 'Proactive fasttracking' diffusion of supermarkets in developing countries: Implications for market institutions and trade. J. Econ. Geography 7:399-431. https://doi.org/10.1093/jeg/lbm007
  60. Ross, S. and D. Evans. 2003. The environmental effect of reusing and recycling a plastic-based packaging system. J. Cleaner Prod. 11:561-571. https://doi.org/10.1016/S0959-6526(02)00089-6
  61. Roy, P., D. Nei, H. Okadome, N. Nakmura, T.I. Orikasa, and T. Shina. 2008. Life cycle inventory analysis of fresh tomato distribution systems in Japan considering the quality aspect. J. Food Eng. 86:225-233. https://doi.org/10.1016/j.jfoodeng.2007.09.033
  62. Schmidt, J.H., P. Christensen, and T.S. Christensen. 2009. Assessing the land use implications of biodiesel use from an LCA perspective. J. Land Use Sci. 4:35-52. https://doi.org/10.1080/17474230802645790
  63. SETAC Europe LCA Steering Committee. 2008. Standardisation efforts to measure greenhouse gases and 'carbon footprinting' for products. Intl. J. Life Cycle Assessment 13:87-88. https://doi.org/10.1065/lca2008.02.380
  64. Sim, S., M. Barry, R. Clift, and S.J. Cowell. 2007. The relative importance of transport in determining an appropriate sustainability strategy for food sourcing: a case study of fresh produce supply chains. Intl. J. Life Cycle Assessment 12:422-431.
  65. Smith, A., P. Watkiss, G. Tweddle, A. McKinnon, M. Browne, A. Hunt, C. Treleven, C. Nash, and S. Cross. 2005. The validity of food miles as an indicator of sustainable development: Final report. Food Miles Final Report Issue 7. AEA Technol. Environ., Didcot.
  66. Sundkvist, A., A.M. Jansson, and P. Larsson. 2001. Strengths and limitations of localizing food production as a sustainability building strategy: An analysis of bread production on the island of Gotland, Sweden. Ecol. Econ. 37:217-227. https://doi.org/10.1016/S0921-8009(00)00277-9
  67. Tesco. 2008. Carbon labeling and Tesco. www.tesco.com.
  68. Walmart. 2011. www.walmartstores.com.
  69. Wells, C.M. 2001. Total energy indicators of agricultural sustainability: Dairy farming case study final report. Ministry of Agriculture and Forestry, Wellington, New Zealand.
  70. Wiedmann, T. and J. Minx. 2007. A definition of carbon footprint. $ISA^{UK}$ Research report 07-01. www.isa-research.co.uk.