• Title/Summary/Keyword: Horizontal vibration

Search Result 340, Processing Time 0.025 seconds

Performance Evaluation of Seismic Vibration Control of Asymmetrical Cable-Stayed Bridge Using MR Damper (MR 댐퍼를 이용한 비대칭 사장교의 지진 진동제어 성능평가)

  • Heo, Gwanghee;Kim, Chunggil;Gong, Yeong I
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.729-737
    • /
    • 2014
  • A study has been carried out that effectively controls the vibration of asymmetric cable-stayed bridges caused by earthquakes with MR dampers. In order to enhance the practical serviceability of MR dampers, an asymmetric cable-stayed bridge structure has been designed and produced, and a MR damper has been produced so as to have this bridge structure controlled appropriately. An experiment that controls vertical and horizontal vibrations has been carried out by exciting the asymmetric cable-stayed bridge in the horizontal direction with the El-centro seismic wave. The control performance of the MR damper has been evaluated under the five control conditions in the experiments of vibration control in each direction. As a result of the experiment, MR dampers were proved to control vibrations more effectively when either Lyapunov control algorithm or Clipped-optimal control algorithm was used to control vibrations of the asymmetric cable-stayed bridge caused by earthquakes. In addition, different controlling effects were found in vibration controls in vertical and horizontal directions due to the asymmetry of the structure and the horizontal excitation. With such controlling effects, semi-active MR dampers are evaluated to effectively control vibrations caused by earthquakes in flexible and asymmetric structures such as asymmetric cable-stayed bridges.

A Design Of Active Vibration Control System For Precise Maglev Stage (초정밀 자기부상 스테이지용 능동진동제어시스템 설계)

  • Lee, Joo-Hoon;Kim, Yong-Joo;Son, Sung-Wan;Lee, Hong-Ki;Lee, Se-Han;Choi, Young-Kiu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force fer suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system. the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used fer solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage table's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

Characteristics of Reducing the Water-drainage Noise of Toilet-bowl According to the Composition of Water Drainage Piping Materials of the Bathrooms of Apartment Housing (공동주택 욕실 배수배관 자재 구성에 따른 양변기 배수소음 저감 특성)

  • Jeong, A-Yeong;Kim, Kyoung-woo;Shin, Hye-kyung;Yang, Kwan-seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.114-120
    • /
    • 2017
  • Water supply and drainage noise in the bathroom is recognized as one of the main noises, along with the floor-impact sounds, in apartment housings. Recently, to solve such noise issues, a new construction method of installing the piping on the slab has been adopted. rather than the traditional method of penetrating the piping through the slab between the upper and the lower bathrooms. However, this new method has limitations due to high costs and constructional difficulties. Therefore, this study was conducted to develop noise reducing piping and elbows, where the noise can be reduced simply by replacing the existing pipings. The noise level was measured in a laboratory by installing the horizontal drainage piping (three types) and the elbows (three types) developed in this study. The results showed that the horizontal pipings reduced the noise level in LAmax by 0.3 dB(A)~1.0 dB(A), as compared to the existing pipings (VG2), indicating an insignificant noise reduction effect. The elbow reduced the noise level in LAmax by 5.5 dB(A) ~ 11.5 dB(A), as compared to the existing elbow (DRF elbow), with the result of reducing the noise level at all frequencies evenly. Consequently, it was shown that using the elbows is more effective in reducing the water-drainage noise from the toilet than using the horizontal pipings.

A Vibration Response Analysis of Steel Building Frame with K Shape Brace Vibrationally Controlled by Turbulent Flow Dampers sealed by Visco-elastic Material (점탄성물질 난류댐퍼를 이용한 K형 철골 브레이스 골조의 진동응답해석)

  • Lee, Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-68
    • /
    • 2006
  • In this thesis, a full-scale K shape damper test model was constructed in which a passive vibration control system. This passive vibration control system was incorporated with the use of a newly developed turbulent flow damper sealed by viscoelastic material. A series of tests and earthquake observation has been conducted in this test model. The purpose of the present thesis is to investigate the vibration response characteristics of the building and to verify the effectiveness of the vibration control system. By the static loading test, it was recognized that incorporation of the dampers had little influence on static horizontal stiffness of the building. Free vibration tests revealed that the dampers incorporated increased the damping ratio of the building up to 3 times compared with the undamped case. The effectiveness of the developed vibration control system was confirmed based on the excitation tests and earthquake response observation.

  • PDF

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.

Bending-Torsional Vibration Characteristics of Large Structure Influenced by Coupling Effects (연성효과에 의한 대형 구조물의 굽힘-비틀림 진동특성)

  • 송창용;손충열;송재영
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.431-438
    • /
    • 1996
  • The channel type structure which has large openings is frail with respect to torsional strength, and the horizontal-torsional motion is highly coupled, because of the large difference between the centroil and the shear center. Also, a discontinuous boundary phase is came from tansition section between the opened section and the closed section. To analyze the Bending- Torsional coupled mode parameters for the channel type structure, the Transfer Matrix Method was used. Comparing the result of F.D.M.T.M.M yields good results in relatively low frequency region.

  • PDF

Vibration Characteristics of Curved Members Resting on Elastic Foundations (탄성지반 위에 놓인 곡선부재의 진동 특성)

  • 오상진;박광규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.788-793
    • /
    • 2004
  • The main purpose of this paper is to Investigate the free vibrations of circular curved members resting on nonhomogeneous elastic foundations. The governing differential equations derived in a previous paper are used. The governing equations are solved numerically to obtain frequencies. Hinged-hinged end constraint is considered in numerical examples. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters: the foundation rested ratio, the foundation parameter, the horizontal rise to span length ratio, the slenderness ratio, and the width ratio of the contact area between the member and the foundation.

  • PDF

Robust Motion Controller Design for Flexible XY Positioning Systems (유연한 XY 위치결정 시스템을 위한 강인 동작 제어기 설계)

  • 김봉근;박상덕;정완균;염영일
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • A robust motion control method is proposed fur the point-to-point position control of a XY positioning system which consists of a base cart, elastic ben and moving mass. The horizontal motion controller consists of the feedforward controller to suppress the single mode vibration of the elastic beam and the feedback controller to get the high-accuracy positioning performance of the base cart. Input preshaping vibration suppression method based on system modeling with analytic frequency equation is proposed and integrated into the robust internal-loop compensator(RIC) to increase the robustness of the whole closed-loop system The vertical motion controller is proposed based on the dual RIC structure. Through experiments, it is shown that the proposed method can stabilize the system and suppress the vibration in the presence of uncertainties and disturbances.

An efficient modeling technique for floor vibration in multi-story buildings

  • Lee, Dong-Guen;Ahn, Sang-Kyoung;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.603-619
    • /
    • 2000
  • Analysis of a framed structure for vertical vibration requires a lot of computational efforts because large number of degrees of freedom are generally involved in the dynamic responses. This paper presents an efficient modeling technique for vertical vibration utilizing substructuring technique and super elements. To simplify the modeling procedure each floor in a structure is modeled as a substructure. Only the vertical translational degrees of freedom are selected as master degrees of freedom in the inside of each substructure. At the substructure-column interface, horizontal and rotational degrees of freedom are also included considering the compatibility condition of slabs and columns. For further simplification, the repeated parts in a substructure are modeled as super elements, which reduces computation time required for the construction of system matrices in a substructure. Finally, the Guyan reduction technique is applied to enhance the efficiency of dynamic analysis. In numerical examples, the efficiency and accuracy of the proposed method are demonstrated by comparing the response time histories and the analysis time.

The Seismic Behavior of the Truss-Arch Structure by Lead Rubber Bearing and Friction Pendulum System with Seismic Isolation (납고무받침 면진장치와 마찰진자 면진장치에 의한 트러스-아치 구조물의 지진거동 비교)

  • Kim, Gee-Cheol;Seok, Keun-Yung;Kang, Joo-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.374-379
    • /
    • 2008
  • The purpose of seismic isolation system among them is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF