• 제목/요약/키워드: Horizontal shear

검색결과 660건 처리시간 0.02초

Deformation analysis of a geocell mattress using a decoupled iterative method

  • Zhang, Ling;Zhao, Minghua;Zhao, Heng
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.775-790
    • /
    • 2013
  • Deformation analysis is a major concern in many geotechnical applications. In this paper, the deformation behavior of a geocell mattress subjected to symmetric loads was studied. The mattress was idealized as an elastic foundation beam. The horizontal beam-soil interfacial shear resistances at the beam top and bottom sides were taken into account by assuming the resistances to be linear with the relative horizontal displacements. A decoupled iterative method was employed to solve the differential displacement equations derived from the force analysis of a beam element and to obtain the solutions for the deformations and internal forces of the geocell reinforcement. The validity of the present solutions was verified by the existing finite element method and power-series solutions.

프리캐스트 조립식 맨홀 접합부의 구조성능 평가 (Evaluation of Structural Performance of Joint in Precast Prefabricated Manhole)

  • 정철헌;송나영
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.48-61
    • /
    • 2011
  • In this study, static tests were done on the joints between precast manholes and the joints between manhole and sewer. The static loading tests in not only elastic range but also ultimate state of model members were carried out to investigate the bond strength and ultimate load of a joint of precast manholes. Specimens were tested in bending, horizontal shear, horizontal shear of circumferencial direction and direct tension. The results of tests indicated good structural performance of the joints between precast manholes and the joints between manhole and sewer.

Fundamental Study on a New Evaluation Method of The Safety Prefabricated Scaffolds

  • Takahashi, Hiroki;Ohdo, Katsutoshi;Takanashi, Seiji
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.21-29
    • /
    • 2010
  • When a new member of a scaffold is developed, it is necessary to follow the standard. Therefore, all scaffolds will assume the same structure. The aim of this study was to establish a new method for evaluating scaffold performance. In the present study, a buckling analysis of prefabricated scaffolds was executed, using the shear rigidity of the vertical and the horizontal frames as parameters. From the results, an equation is proposed for evaluating the strength of prefabricated scaffolds.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석 (Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade)

  • 조봉현;이창수;최성옥;유기완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF

Seismic behavior of reinforced concrete exterior beam-column joints strengthened by ferrocement composites

  • Li, Bo;Lam, Eddie Siu-shu;Wu, Bo;Wang, Ya-yong
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.233-256
    • /
    • 2015
  • This paper presents an experimental study to assess the effectiveness of using ferrocement to strengthen deficient beam-column joints. Ferrocement is proposed to protect the joint region through replacing concrete cover. Six exterior beam-column joints, including two control specimens and four strengthened specimens, are prepared and tested under constant axial load and quasi-static cyclic loading. Two levels of axial load on column (0.2fc'Ag and 0.4fc'Ag) and two types of skeletal reinforcements in ferrocement (grid reinforcements and diagonal reinforcements) are considered as test variables. Experimental results have indicated that ferrocement as a composite material can enhance the seismic performance of deficient beam-column joints in terms of peak horizontal load, energy dissipation, stiffness and joint shear strength. Shear distortions within the joints are significantly reduced for the strengthened specimens. High axial load (0.4fc'Ag) has a detrimental effect on peak horizontal load for both control and ferrocement-strengthened specimens. Specimens strengthened by ferrocement with two types of skeletal reinforcements perform similarly. Finally, a method is proposed to predict shear strength of beam-column joints strengthened by ferrocement.

수평 전단시험에 의한 납 삽입 적층고무베어링의 기계적 특성 평가 (Mechanical Characterization of Lead-Rubber Bearing by Horizontal Shear Tests)

  • 전영선;최인길;유문식
    • 한국지진공학회논문집
    • /
    • 제5권6호
    • /
    • pp.1-10
    • /
    • 2001
  • 본 연구에서는 수평전단시험을 통하여 LRB(lead-rubber hearing)의 동적 특성을 분석하였다. 10ton 및 200ton 용량의 LRB를 이용하여 수평전단시험을 수행한 결과 LRB의 동적 특성은 수평하중의 재하속도, 연직하중의 크기 및 전단변형률 등에 따라 크게 달라지는 것으로 나타났다. 세장비가 큰 면진장치에 과도한 변형을 가할 경우 내부 납심에 소성한지가 발생되어 납심이 파괴되는 것으로 나타났다. 따라서 면진구조물의 설계 및 해석 시에는 지진응답과 재하하중의 크기에 따라서 달라지는 LRB의 기계적 특성치를 적용하여 안전한 설계가 이루어질 수 있도록 하여야 한다.

  • PDF

근사수평 반류성층 2상유동에서의 계면전단응력 및 마찰계수 (Interfacial shear stresses and friction factors in nearly-horizontal countercurrent stratified two-phase flow)

  • 이상천;이원석
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.116-122
    • /
    • 1988
  • 본 연구에서는 공기와 물을 매질로 사용하여 3차원 계면파가 존재하는 근사수평 반류성층유동에서의 계면전단응력과 마찰계수를 결정하였다. 기상과 액상의 유량조건에 따라 3차원 계면파의 특성을 needle contact법에 의하여 측정 하였으며, 기상의 압력강하와 속도분포를 구하여 계면전단응력을 구하였다. 또 공학적인 응용을 위하여 3차원과 영역에서의 계면마찰계수에 관한 실험식을 개발하였다. 그리고 거칠은 고체표면에서의 마찰계수를 표현한 Nikuradse식을 이용하여 계면의 등가조도(equivalent roughness)를 계산하였으며 이것을 계면의 파고교란강도와 비교분석하여 계면전단응력에 영향을 미치는 인자들을 규명하였다.