• Title/Summary/Keyword: Horizontal detection

Search Result 304, Processing Time 0.026 seconds

A Face Detection Method using Gradual Expansion of Skin Color Range (피부색 범위의 점진적 확장에 의한 얼굴 검출 방법)

  • 문대성;한영미;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.5
    • /
    • pp.396-405
    • /
    • 2001
  • Usually it is difficult to extract facial regions in a complex image by using only a predetermined skin color. Expecially, it is more difficult to separate them from background regions that contains the skin color. This paper proposes a face detection method by using gradual range expansion of an initial skin color. By analyzing the skin color distribution several images that are collected in the Web, the range of dense distribution is selected as the range of the initial skin color. In each expanding step, expanded regions in the image are tested whether they can be actual facial regions by using the information of the shape of general face and the location of face organs. The shape of general face is modeled as an ellipse and the aspect ratio of its bounding box is used to define the shape constraint for faces. Only the eyes and lips are used as the face organs, which can be easily detected by extracting horizontal edges in the expanded regions. through several experiments, it is confirmed that the proposed method can detect exactly not only faces having partly distorted regions by highlight but also faces neighboring similar color regions.

  • PDF

A Block Classification and Rotation Angle Extraction for Document Image (문서 영상의 영역 분류와 회전각 검출)

  • Mo, Moon-Jung;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.509-516
    • /
    • 2002
  • This paper proposes an efficient algorithm which recognizes the mixed document image consisting of the images, texts, tables, and straight lines. This system is composed of three steps. The first step is the detection of rotation angle for complementing skewed images, the second is detection of erasing an unnecessary background region and last is the classification of each component included in document images. This algorithm performs preprocessing of detecting rotation angles and correcting documents based on the detected rotation angles in order to minimize the error rate by skewness of the documentation. We detected the rotation angie using only horizontal and vertical components in document images and minimized calculation time by erasing unnecessary background region in the detecting process of component of document. In the next step, we classify various components such as image, text, table and line area included in document images. we applied this method to various document images in order to evaluate the performance of document recognition system and show the successful experimental results.

Robust object tracking using projected motion and histogram intersection (투영된 모션과 히스토그램 인터섹션을 이용한 강건한 물체추적)

  • Lee, Bong-Seok;Moon, Young-Shik
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.99-104
    • /
    • 2002
  • Existing methods of object tracking use template matching, re-detection of object boundaries or motion information. The template matching method requires very long computation time. The re-detection of object boundaries may produce false edges. The method using motion information shows poor tracking performance in moving camera. In this paper, a robust object tracking algorithm is proposed, using projected motion and histogram intersection. The initial object image is constructed by selecting the regions of interest after image segmentation. From the selected object, the approximate displacement of the object is computed by using 1-dimensional intensity projection in horizontal and vortical direction. Based on the estimated displacement, various template masks are constructed for possible orientations and scales of the object. The best template is selected by using the modified histogram intersection method. The robustness of the proposed tracking algorithm has been verified by experimental results.

Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform

  • Chang, Min-Hyuk;Oh, Mi-Suk;Lim, Chun-Hwan;Ahmad, Muhammad-Bilal;Park, Jong-An
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.283-288
    • /
    • 2001
  • In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion followed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wave let transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. other facial features are obtained from edge information of the image. The characteristic vectors are extrated from DWT of the segmented face image. These characteristic vectors are normalized between +1 and -1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100% on the learned system, and about 92% on the test images.

  • PDF

Skew correction of face image using eye components extraction (눈 영역 추출에 의한 얼굴 기울기 교정)

  • Yoon, Ho-Sub;Wang, Min;Min, Byung-Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.71-83
    • /
    • 1996
  • This paper describes facial component detection and skew correction algorithm for face recognition. We use a priori knowledge and models about isolated regions to detect eye location from the face image captured in natural office environments. The relations between human face components are represented by several rules. We adopt an edge detection algorithm using sobel mask and 8-connected labelling algorith using array pointers. A labeled image has many isolated components. initially, the eye size rules are used. Eye size rules are not affected much by irregular input image conditions. Eye size rules size, and limited in the ratio between gorizontal and vertical sizes. By the eye size rule, 2 ~ 16 candidate eye components can be detected. Next, candidate eye parirs are verified by the information of location and shape, and one eye pair location is decided using face models about eye and eyebrow. Once we extract eye regions, we connect the center points of the two eyes and calculate the angle between them. Then we rotate the face to compensate for the angle so that the two eyes on a horizontal line. We tested 120 input images form 40 people, and achieved 91.7% success rate using eye size rules and face model. The main reasons of the 8.3% failure are due to components adjacent to eyes such as eyebrows. To detect facial components from the failed images, we are developing a mouth region processing module.

  • PDF

A New Depth and Disparity Visualization Algorithm for Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.645-650
    • /
    • 2010
  • In this paper, we present the effect of binocular cues which plays crucial role for the visualization of a stereoscopic or 3D image. This study is useful in extracting depth and disparity information by image processing technique. A linear relation between the object distance and the image distance is presented to discuss the cause of cybersickness. In the experimental results, three dimensional view of the depth map between the 2D images is shown. A median filter is used to reduce the noises available in the disparity map image. After the median filter, two filter algorithms such as 'Gabor' filter and 'Canny' filter are tested for disparity visualization between two images. The 'Gabor' filter is to estimate the disparity by texture extraction and discrimination methods of the two images, and the 'Canny' filter is used to visualize the disparity by edge detection of the two color images obtained from stereoscopic cameras. The 'Canny' filter is better choice for estimating the disparity rather than the 'Gabor' filter because the 'Canny' filter is much more efficient than 'Gabor' filter in terms of detecting the edges. 'Canny' filter changes the color images directly into color edges without converting them into the grayscale. As a result, more clear edges of the stereo images as compared to the edge detection by 'Gabor' filter can be obtained. Since the main goal of the research is to estimate the horizontal disparity of all possible regions or edges of the images, thus the 'Canny' filter is proposed for decipherable visualization of the disparity.

Development of an SH-SAW Sensor for Detection of DNA (DNA 측정용 SH-SAW 센서 개발)

  • Hur Youngjune;Pak Yukeun Eugene;Roh Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • We have developed SH (shear horizontal) surface acoustic wave (SAW) sensors for detection of the immobilization and hybridization of DNA (deoxyribonucleic acid) on the gold coated delay line of transverse SAW devices. The experiments of DNA immobilization and hybridization were performed with 15-mer oligonucleotides (probe and complementary target DNA). The sensor consists of twin SAW delay line oscillators operating at 100 MHz fabricated on $36^{\circ}$ rotated Y-cut $LiTaO_3$ piezoelectric single crystals. The relative change in the frequency of the two oscillators was monitored to detect the hybridization between target DNA and immobilized probe DNA in pH 7.4 PBS (phosphate buffered saline) solution. The measurement results showed a good response of the sensor to the mass loading effects of the DNA immobilization and hybridization with the sensitivity up to $1.55{\cal}ng/{\cal}ml/Hz$.

Detection of Irradiated Beef and Pork by DNA Comet Assay (DNA Comet Assay를 이용한 방사선 조사 쇠고기와 돼지고기의 검지 기술)

  • 박준영;오경남;김경은;양재승
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1025-1029
    • /
    • 2000
  • This study was conducted to investigate whether a DNA comet assay could be applied for identifying irradiated pork and beef. Pork and beef were irradiated with Co-60 gamma rays at 0.1, 0.3, 0.5, 0.7 and 1.0 kGy, and stored in a freezer Cells separated from the samples were embedded in agarose gel on a slide, dissolved in a lysis solution, and electrophoresed at 2 V/cm for 2.0 min by horizontal electrophoesis. The cells were then stained with a silver staining in order to visualize the DNA using a micro-scope. The DNA fragments of the irradiated cells stretched or migrated out of the cells and formed tails towards the anode, giving the appearance of comets, while unirradiated cells formed very short or no tails. The distance of DNA migration increased with irradiation dose. Since the statistical analysis showed a significant correlation between tail length and irradiation dose, a DNA comet assay could provide not only identification but also estimation of the irradiation dose for irradiated beef and pork.

  • PDF

Proposition for Retina Model Based on Electrophysiological Mechanism and Analysis for Spatiotemporal Response (전기생리학적 기전에 근거한 망막 모델의 제안과 시공간적 응답의 분석)

  • Lee, Jeong-Woo;Chae, Seung-Pyo;Cho, Jin-Ho;Kim, Myoung-Nam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.49-58
    • /
    • 2002
  • Based on electrophysiological retina mechanism, a retina model is proposed, which has similar response characteristics compared with the real primate retina. Photoreceptors, horizontal cells, and bipolar cells are modeled based on the previously studied retina models. And amacrine cells known to have relation to movements detection, and bipolar cell terminals are newly modeled using 3 NDP mechanism. The proposed model verified by analyzing the spatial response characteristics to stationary and moving stimuli, and characteristics for different speeds. Through this retina model, human vision system could be applied to computer vision systems for movement detection, and it could be the basic research for the implantable artificial retina.

Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms (컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식)

  • Lee, Jong-Hee;Kim, Jin-Whan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.471-476
    • /
    • 2010
  • In this paper, we propose an effective method that recognizes the vehicle license plate using RGB color information and back-propagation neural network algorithm. First, the image of the vehicle license plate is adjusted by the Mean of Blue values in the vehicle plate and two candidate areas of Red and Green region are classified by calculating the differences of pixel values and the final Green area is searched by back-propagation algorithm. Second, our method detects the area of the vehicle plate using the frequence of the horizontal and the vertical histogram. Finally, each of codes are detected by an edge detection algorithm and are recognized by error back-propagation algorithm. In order to evaluate the performance of our proposed extraction and recognition method, we have run experiments on a new car plates. Experimental results showed that the proposed license plate extraction is better than that of existing HSI information model and the overall recognition was effective.