Proposition for Retina Model Based on Electrophysiological Mechanism and Analysis for Spatiotemporal Response

전기생리학적 기전에 근거한 망막 모델의 제안과 시공간적 응답의 분석

  • Lee, Jeong-Woo (School of Electronics and Electrical Eng., Kyungpook National University) ;
  • Chae, Seung-Pyo (NBRC, Seoul National University) ;
  • Cho, Jin-Ho (School of Electronics and Electrical Eng., Kyungpook National University) ;
  • Kim, Myoung-Nam (Dept. of Biomedical Eng., School of Medicine, Kyungpook National University)
  • Published : 2002.11.01

Abstract

Based on electrophysiological retina mechanism, a retina model is proposed, which has similar response characteristics compared with the real primate retina. Photoreceptors, horizontal cells, and bipolar cells are modeled based on the previously studied retina models. And amacrine cells known to have relation to movements detection, and bipolar cell terminals are newly modeled using 3 NDP mechanism. The proposed model verified by analyzing the spatial response characteristics to stationary and moving stimuli, and characteristics for different speeds. Through this retina model, human vision system could be applied to computer vision systems for movement detection, and it could be the basic research for the implantable artificial retina.

본 논문에서는 망막의 전기생리학적 기전을 바탕으로 실제 망막과 유사한 기능 및 응답 특성을 갖는 망막 모델을 제안하였다. 시세포에서 양극세포까지는 기존에 연구된 여러 망막 모델들을 종합하여 모델링하였고, 3 NDP 기전을 이용하여 움직임 정보를 검출한다고 알려져 있는 아마크린세포와 양극세포 터미널에 관한 새로운 모델을 제안하였다. 이 모델의 평가를 위하여, 공간상의 동적 자극과 정지 자극에 대한 응답 특성을 비교 분석을 하였을 뿐만 아니라 자극의 움직임 속도에 따른 특성에 대한 분석도 수행하여 제안한 망막 모델을 검증하였다. 본 연구결과는 움직임 정보를 검출하기 위한 비전 시스템에 대한 인간 시각 시스템의 적용 및 생체에 이식할 수 있는 인공 망막의 개발을 위한 기초 연구에 이용될 수 있을 것이다.

Keywords

References

  1. J.F. Rizzo and J.L. Wyatt, 'Prospects for a visual prosthesis,' Neuroscientist, Vol. 3, pp. 251-262, July 1997 https://doi.org/10.1177/107385849700300413
  2. D. Marin, M. Troosters, I. Martinez, E. Valderrama, and J. Aguilo, 'New developments for high performance implantable stimulators: First 3 Mbps up to 4.46 Mbps demodulator chip through a wireless transcutaneous link,' 7th International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro'99) 1999 https://doi.org/10.1109/MN.1999.758854
  3. B. J. Seelig and W. Dobelle, 'Altruism, volunteering for artificial vision experimentation and unanticipated psychological,' ASAIO Journal, Vol. 46, Issue 2, pp. 233, 2000
  4. K. Purpura, D. Tranchina, E. Kaplan, and R. M. hapley, 'Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells,' Visual Neuro-science, Vol. 4, pp. 75-93, 1990 https://doi.org/10.1017/S0952523800002789
  5. S. Grossberg, 'Neural expectation: Cerebellar and retinal analogs of cells fired by earnable or unlearned pattern classes,' Kybernetik, Vol. 10, pp. 49-57, 1972 https://doi.org/10.1007/BF00288784
  6. J. Richter and S. Ullman, 'A model for the temporal organization of X- and Y-type receptive fields in the primate retina,' Biological Cybernetics, Vol. 43, pp. 127-145, 1982 https://doi.org/10.1007/BF00336975
  7. J. Teeters, A. Jacobs, and F. Werblin, 'How neural interactions from neural responses in the salamander retina,' Journal of computational Neuroscience, Vol. 4, pp. 5-27, 1997 https://doi.org/10.1023/A:1008840709467
  8. S. Shah and M. D. Levin, 'Information processing in primate retinal cone pathways: A model,' Technical Report CIM TR-93-19, Center for Intelligent Machines, McGill Univ., 1993
  9. D.J. Fleet, P.E. Hallett, and A.D. Jepson, 'Spatiotemporal inseparability in early visual processing,' Biological Cybernetics, Vol. 52, pp. 153-164, 1985 https://doi.org/10.1007/BF00339944
  10. B. Raska, E. Nemeth, and F. S. Werblin, 'Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina,' Journal of Neuroscience, Vol. 18, no. 9, pp. 3451-3459, 1998
  11. J. E. Dowling, 'The RETINA: An aproachable part of the brain,' Belknap Press of Harvard University Press, Cambridge, pp. 13, 101-116, MA, 1987
  12. D. Hubel, 'Eye ; Brain and Vision,' Scientific American Library and W. H. Freeman, NewYork 1988
  13. R.W. Rodieck, 'The primate retina,' In H.D. Steklis and J. Erwin, editors, Comparative Primate Biology, vol. 4 Neurosciences, pages 203-278. Alan R. Liss Inc., New York, NY, 1988
  14. F.S. Werblin, 'Lateral interactions at inner plexiform layer of vertebrate retina : antagonistic responses to change.' Science, Vol. 175, pp. 1008-1010, 1972 https://doi.org/10.1126/science.175.4025.1008
  15. R.A. Normann and F.S. Werblin, 'Control of retinal sensitivity I: Light and dark adaptation of vertebrate rods and cones.' Journal of General Physiology, Vol. 63, pp. 37-61, 1974 https://doi.org/10.1085/jgp.63.1.37
  16. F.S. Werblin, 'Control of retinal sensitivity II: Lateral interactions at the outer plexiform layer,' Journal of General Physiology, Vol. 63, pp. 62-87, 1974 https://doi.org/10.1085/jgp.63.1.62