• Title/Summary/Keyword: Homotopy perturbation method (HPM)

Search Result 17, Processing Time 0.018 seconds

THE CONVERGENCE OF HOMOTOPY METHODS FOR NONLINEAR KLEIN-GORDON EQUATION

  • Behzadi, Shadan Sadigh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1227-1237
    • /
    • 2010
  • In this paper, a Klein-Gordon equation is solved by using the homotopy analysis method (HAM), homotopy perturbation method (HPM) and modified homotopy perturbation method (MHPM). The approximation solution of this equation is calculated in the form of series which its components are computed easily. The uniqueness of the solution and the convergence of the proposed methods are proved. The accuracy of these methods are compared by solving an example.

ANALYTICAL TECHNIQUES FOR SYSTEM OF TIME FRACTIONAL NONLINEAR DIFFERENTIAL EQUATIONS

  • Choi, Junesang;Kumar, Devendra;Singh, Jagdev;Swroop, Ram
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1209-1229
    • /
    • 2017
  • We coupled the so-called Sumudu transform with the homotopy perturbation method (HPM) and the homotopy analysis method (HAM), which are called homotopy perturbation Sumudu transform method (HPSTM) and homotopy analysis Sumudu transform method (HASTM), respectively. Then we show how HPSTM and HASTM are more convenient than HPM and HAM by conducting a comparative analytical study for a system of time fractional nonlinear differential equations. A Maple package is also used to enhance the clarity of the involved numerical simulations.

SOLUTION OF A NONLINEAR EQUATION WITH RIEMANN-LIOUVILLES FRACTIONAL DERIVATIVES BY HOMOTOPY PERTURBATION METHOD

  • Mohyud-Din, Syed Tauseef;Yildirim, Ahmet
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.55-60
    • /
    • 2011
  • The aim of the paper is to apply Homotopy Perturbation Method (HPM) for the solution of a nonlinear fractional differential equation. Finally, the solution obtained by the Homotopy perturbation method has been numerically evaluated and presented in the form of tables and then compared with those obtained by truncated series method. A good agreement of the results is observed.

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

  • Ozturk, Baki;Coskun, Safa Bozkurt
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.415-425
    • /
    • 2011
  • In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, $N_r$. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for all the cases considered in this study and the differential transform method (DTM) results available in the literature for the fixed-pinned case.

Analytical study of nonlinear vibration of oscillators with damping

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.221-232
    • /
    • 2015
  • In this study, Homotopy Perturbation Method (HPM) is used to solve the nonlinear oscillators with damping. We have considered two strong nonlinear equations to show the application of the method. The Runge-Kutta's algorithm is used to obtain the numerical solution for the problems. The method works very well for the whole range of initial amplitudes and does not demand small perturbation and also sufficiently accurate to both linear and nonlinear physics and engineering problems. Finally to show the accuracy of the HPM, the results have been shown graphically and compared with the numerical solution.

Vibration of electrostatically actuated microbeam by means of homotopy perturbation method

  • Bayat, M.;Pakar, I.;Emadi, A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.823-831
    • /
    • 2013
  • In this paper, it has been attempted to present a powerful analytical approach called Homotopy Perturbation Method (HPM). Free vibration of an electrostatically actuated microbeam is considered to study analytically. The effect of important parameters on the response of the system is considered. Some comparisons are presented to verify the results with other researcher's results and numerical solutions. It has been indicated that HPM could be easily extend to any nonlinear equation. We try to provide an easy method to achieve high accurate solution which valid for whole domain.

ANALYTICAL SOLUTION OF SINGULAR FOURTH ORDER PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS OF VARIABLE COEFFICIENTS BY USING HOMOTOPY PERTURBATION TRANSFORM METHOD

  • Gupta, V.G.;Gupta, Sumit
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.165-177
    • /
    • 2013
  • In this paper, we apply Homotopy perturbation transform method (HPTM) for solving singular fourth order parabolic partial differential equations with variable coefficients. This method is the combination of the Laplace transform method and Homotopy perturbation method. The nonlinear terms can be easily handled by the use of He's polynomials. The aim of using the Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in other semi-analytical methods such as Homotopy perturbation method (HPM), Variational iteration method (VIM) and Adomain Decomposition method (ADM). The proposed scheme finds the solutions without any discretization or restrictive assumptions and avoids the round-off errors. The comparison shows a precise agreement between the results and introduces this method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in engineering too.

Analysis of the hematopoiesis process in mammalian bone using homotopy perturbation method

  • Akano, Theddeus T.;Nwoye, Ephraim O.;Adeyemi, Segun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.51-64
    • /
    • 2020
  • In this study, the mathematical model that describes blood cell development in the bone marrow (i.e., hematopoiesis) has been studied via the Homotopy Perturbation Method (HPM). The results from the present work compared very well with the numerical solutions from published literature. This work has shown that the HPM is viable for solving delay differential equations born from hematopoiesis problem. The influence of the proliferating cells loss rate, time delay rate and the phase re-entry rate on the population densities of both the proliferating and resting cells were also determined through the underlined procedure.

SOLUTION OF TENTH AND NINTH-ORDER BOUNDARY VALUE PROBLEMS BY HOMOTOPY PERTURBATION METHOD

  • Mohyud-Din, Syed Tauseef;Yildirim, Ahmet
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • In this paper, we apply homotopy perturbation method (HPM) for solving ninth and tenth-order boundary value problems. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed homotopy perturbation method solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method.

The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.123-131
    • /
    • 2014
  • In this paper we have considered the vibration of parametrically excited oscillator with strong cubic positive nonlinearity of complex variable in nonlinear dynamic systems with forcing based on Mathieu-Duffing equation. A new analytical approach called homotopy perturbation has been utilized to obtain the analytical solution for the problem. Runge-Kutta's algorithm is also presented as our numerical solution. Some comparisons between the results obtained by the homotopy perturbation method and Runge-Kutta algorithm are shown to show the accuracy of the proposed method. In has been indicated that the homotopy perturbation shows an excellent approximations comparing the numerical one.