• Title/Summary/Keyword: Homogeneous Model

Search Result 992, Processing Time 0.032 seconds

Comparison of uniform and spatially varying ground motion effects on the stochastic response of fluid-structure interaction systems

  • Bilici, Yasemin;Bayraktar, Alemdar;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.407-428
    • /
    • 2009
  • The effects of the uniform and spatially varying ground motions on the stochastic response of fluid-structure interaction system during an earthquake are investigated by using the displacement based fluid finite elements in this paper. For this purpose, variable-number-nodes two-dimensional fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a general-purpose computer program SVEM, which is used for stochastic dynamic analysis of solid systems under spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes wave-passage, incoherence and site-response effects. The effect of the wave-passage is considered by using various wave velocities. The incoherence effect is examined by considering the Harichandran-Vanmarcke and Luco-Wong coherency models. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. A concrete gravity dam is selected for numerical example. The S16E component recorded at Pacoima dam during the San Fernando Earthquake in 1971 is used as a ground motion. Three different analysis cases are considered for spatially varying ground motion. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for each case and compare with those of uniform ground motion. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic response of fluid-structure interaction systems.

A Fundamental Analysis of an Interface Crack by Crack Energy Density (균열에너지밀도에 의한 이종재 계면균열의 기초적 검토)

  • 권오헌;도변승언;서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1458-1467
    • /
    • 1992
  • Recently, the composite materials have been researched actively by many researchers because of its useful properties. Especially, an interface crack on the dissimilar material exposes the behavior of the mixed mode crack even though under only the tension stress. In the previous papers, crack energy density(CED) was shown as the crack behavior evaluation parameter which can be expressed consistently from the onset until a final fracture. In a present paper, the basic properties of CED on the interface crack are examined because the results by CED at the homogeneous material above are also expected to be held at the dissimilar material. And we proposed that the contribution of each mode of CED can be separated and be evaluated. Furthermore, the total CED and contribution of each mode are evaluated by domain integral through a finite element analysis at the elastic crack model and the basic examination are carried out.

A Connection Admission Control with Recursive Formula in ATM Networks (ATM 망에서 재귀 연산에 의한 연결 수락 제어)

  • Nam, Jae-Hyun;Park, Chan-Jung;Lee, Kee-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1788-1796
    • /
    • 1997
  • In this paper, we propose a new connection admission control(CAC) algorithm for traffic control in ATM network in which traffic estimation is performed based on user-specified parameters at every moment of connection request or connection release by recursive formula which makes real-time calculation possible. And traffic estimation using cell flow measurement is carried out when the number of connectioned calls does not change during a measurement reflection period. Performance analysis of the proposed method is carried out using several aspects for homogeneous and heterogeneous bursty traffic. The results showed that the proposed CAC method revealed better performance, than conventional CAC method for burst model in both utilization and QoS point of view.

  • PDF

Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. The parameters obtained from the thermodynamic analysis revealed that the biosorption of Pb(II) and Cu(II) by biomass immobilized in biocarrier beads was a spontaneous, irreversible, and physically-occurring adsorption phenomenon. Comparing batch experimental data to various adsorption isotherms confirmed that Koble-Corrigan and Langmuir isotherms well represented the biosorption equilibrium and the system likely occurred through monolayer sorption onto a homogeneous surface. The maximum adsorption capacities of the biocarrier beads for Pb(II) and Cu(II) were calculated as 0.3332 and 0.5598 mg/g, respectively. For the entire biosorption process, pseudo-second-order and Ritchie second-order kinetic models were observed to provide better descriptions for the biosorption kinetic data. Application of the intra-particle diffusion model showed that the intraparticle diffusion was not the rate-limiting step for the biosorption phenomena. Overall, the dead biomass immobilized in polysulfone biocarrier beads effectively removed metal ions and could be applied as a biosorbent in wastewater treatment.

Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines (HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석)

  • Lim, Ock-Taeck
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.21-28
    • /
    • 2009
  • The purpose of this study is to gain a better understanding of the effects of thermal stratification and partial fuel stratification on reducing the pressure-rise rate and emission in HCCI combustion. The engine is fueled with Di-Methyl Ether(DME) which has unique 2-stage heat release. Computational work is conducted with multi-zones model and detailed chemical reaction scheme. Calculation result shows that wider thermal stratification and partial fuel stratification prolong combustion duration and reduce pressure rise rate. But too wide partial fuel stratification increases CO and NOx concentration in exhaust gas, and decreases combustion efficiency.

  • PDF

A study on interface heat transfer coefficient in hot forging of Al6061 by experiments and FE analysis (Al6061 열간단조시 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.219-222
    • /
    • 2005
  • The temperature difference between die and workpiece has frequently caused various surface defects. The non-homogeneous temperature distribution of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperatures were mainly affected by the coefficient of thermal contact conductance. The precise coefficient is necessary to predict accurately the temperature changes of die and workpiece. The experiment is preformed to measure the temperature distribution of die and workpiece in closed die upsetting. And then, the coefficient is classified into function of pressure and confirmed by the comparison between experiments and FE analyses using the other model. The FE analysis to predict the temperature distribution is performed by commercial software $DEFORM-3D^{TM}$. However, it might be impossible to measure directly the temperature distribution of forged part. Therefore, the comparisons between measured temperature and predicted values are performed with the hardness of Al6061-forged part.

  • PDF

Modeling of Fin-Tube Heat Exchanger (핀-관 열교환기의 모델링)

  • 박희용;이관수;박동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.952-961
    • /
    • 1989
  • The purpose of this study is to investigate the behavior of operational and design factors on the performance characteristics of a horizontal fin-tube heat exchanger under phase change conditions for refrigerant. The flow and heat transfer in the heat exchanger are simulated numerically taking into account the variations of heat transfer coefficients, thermodynamic and flow properties of refrigerant, and the axial heat conduction in the tube wall. As the results of this study, it was found that the annular flow model was more reasonable physically than the homogeneous one for the two phase flow of refrigerant and axial heat conduction of tube wall did not have a great influence on the analysis. The effects of refrigerant pressure, mass flow rate of air, diameter of tube and the number of fins per unit length of tube were also discussed.

Effects of Additive and Preheat on the Partially Premixed $CH_4-Air$ Counter Flow Flames Considering Non-gray Gas Radiation

  • Park Won-Hee;Chang Hee-Chul;Kim Tae-Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.242-250
    • /
    • 2006
  • Detailed structures of the counterflow flames formed for different inlet fluid temperatures and different amount of additives are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN-II code. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique (WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counterflow flames. The results compared with those obtained by using the SNB model show that the WSGGM-RG is very successful in modeling the counterflow flames with non-gray gas mixture. The numerical results also show that the addition of $CO_2\;or\;H_2O$ to the oxidant lowers the peak temperature and the NO concentration in flame. But preheat of fuel or oxidant raises the flame temperature and the NO production rates. $O_2$ enrichment also causes to raise the temperature distribution and the NO production in flame. And it is found that the $O_2$ enrichment and the fuel preheat were the major parameters in affecting the flame width.

Hyperbolic Reaction-Diffusion Equation for a Reversible Brusselator: Solution by a Spectral Method

  • 이일희;김광연;조웅인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 1999
  • Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are investigated as an extension of the previous work. Intensive stability analysis is performed for three important parameters, Nrd, β and Dx, where Nrd is the reaction-diffusion number which is a measure of hyperbolicity, β is a measure of reversibility of autocatalytic reaction and Dx is a diffusion coefficient of intermediate X. Especially, the dependence on Nrd of stability exhibits some interesting features, such as hyperbolicity in the small Nrd region and parabolicity in the large Nrd region. The hyperbolic reaction-diffusion equations are solved numerically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The numerical method gives good accuracy and efficiency even in a stiff region in the case of small Nrd, and it can be extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory, spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy production changes discontinuously and it shows that different structures of the system have different modes in the dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy production in each structure give no important information related for states of system itself.

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.