• 제목/요약/키워드: Holstein Cattle

Search Result 447, Processing Time 0.022 seconds

A Genetic Marker for the Korean Native Cattle (Hanwoo) Found by an Arbitrarily Primed-Polymerase Chain Reaction (AP-PCR)

  • Lee, Ji-Seon;Lee, Chang-Hee;Nam, Doo-Hyun;Jung, Young-Ja;Yeo, Jung-Sou
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.208-212
    • /
    • 2000
  • In order to develop a specific genetic marker for the Korean native cattle (Hanwoo), an arbitrarily-primed polymerase chain reaction (AP-PCR) analysis of 6 different cattle breeds was attempted. Eight different arbitrary primers, each longer than 20-mer nucleotides, were used. In comparison to the AP-PCR patterns, several distinctive DNA bands that are specific for a certain breed were detected. When the primer Kpn-X was employed, a 280bp DNA fragment was found to be specific only for Hanwoo. In an individual analysis of Hanwoo, this AP-PCR marker was observed in 123 head of cattle among the 153 that were tested (80.4%). Nucleotide sequencing revealed that this fragment has a short microsatellite sequence of tandem repeat, $A(G)_{1-2}\;(C)_{1-3}AGAG$. According to the analysis of AP-PCR band patterns, Hanwoo was discovered to be genetically most closely-related with Holstein among the various cattle breeds.

  • PDF

Fatty Acid Profiles of Various Muscles and Adipose Tissues from Fattening Horses in Comparison with Beef Cattle and Pigs

  • He, M.L.;Ishikawa, S.;Hidari, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1655-1661
    • /
    • 2005
  • The present studies were designed to provide new information on fatty acid profiles of various muscles and adipose tissues of fattening horses in comparison with beef cattle and pigs. In the first study, the lipids were extracted respectively from subcutaneous, intermuscular adipose tissues, longissimus dorsi and biceps femoris muscles of fattening Breton horses (n = 8) with an average body weight of 1,124 kg. In the second study, the lipids were extracted from subcutaneous, intermuscular adipose tissues and longissimus dorsi muscle of fattening horses (n = 13), Japanese Black beef cattle (n = 5), Holstein steers (n = 5) and fattening pigs (n = 5). The fatty acids in the lipid samples were determined by gas chromatography after methylation by a combined base/acid methylation method. It was found that the lipids from horse subcutaneous and intermuscular adipose tissues contained more (p<0.05) polyunsaturated fatty acids (PUFA) which were mainly composed of linoleic acid (C18:2) and linolenic acid (C18:3) than those in the muscles. The weight percent of conjugated linoleic acids (CLA cis 9, trans 11) in lipids from biceps femoris muscle was 0.22%, which was higher (p<0.05) than that from the other depots. The horse lipids were higher (p<0.05) in PUFA but lower (p<0.05) in SFA and MUFA in comparison with those of the cattle and pigs. The percentage of C18:2 or C18:3 fatty acid in the horse lipids were respectively 2-8 fold or 5-18 fold higher (p<0.05) than those of the cattle and pigs. The percentages of CLA (cis 9, trans 11) in the horse lipids (0.14-0.16%) were very close to those of the pigs (0.18-0.19%) but much lower (p<0.05) than those of the Japanese Black beef cattle (0.55-0.94%) and Holstein steers (0.46-0.71%). The results indicated that the fatty acid profiles of lipids from different muscle and adipose tissues of fattening horses differed significantly. In comparison with that of the beef cattle and pigs, the horse lipids contained more C18:2 and C18:3 but less CLA.

Identification of Hanwoo Meat by DNA Analysis (DNA 분석법에 의한 한우고기 판별)

  • Oh, Hong-Rock;Lee, Chang-Soo;Sang, Byung-Chan;Song, Kwang-Taek
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • This study was deal with the development of breed-specific DNA marker which is able to identify Hanwoo and European cattle breeds(Non-Hanwoo) meat. Genetic differentiation between Korean cattle(Hanwoo) and European cattle breeds was examined by Random Amplified Polymorphic DNA(RAPD) analysis. The RAPD patterns were identical among Non-Hanwoo, such as Holstein, Hereford, Aberdeen Angus, Brown Swiss, Limousin or Simmental, but the above pattern was different from that of Hanwoo. All bands detected in the Hanwoo samples were observed in Non-Hanwoo cattle samples, but one of the common bands found in samples was not detected in the Hanwoo samples. The band(1.4kb) may be useful as a marker for identifying a meat of Hanwoo from imported cattle meat. Actually, the detection of the DNA marker was tested by DNA analysis with 929 samples which were prepared from bloods of 673 Hanwoo cattles and 141 Holstein cattles, from 115 imported cattle meats. The DNA marker was absent in 644 of 673 Hanwoo cattles (96%) but present in 245 of 256 Non-Hanwoo cattles (95%). These results show that the DNA marker is effective to characterize Hanwoo and Non-Hanwoo meat by its detection. This DNA marker, however, was not useful in detecting unwanted crossbreeding between two cattle breeds, because the band pattern in hybrid cattle shows one of two band patterns in Hanwoo and Non-Hanwoo.

  • PDF

Comparative assessment of the effective population size and linkage disequilibrium of Karan Fries cattle revealed viable population dynamics

  • Shivam Bhardwaj;Oshin Togla;Shabahat Mumtaz;Nistha Yadav;Jigyasha Tiwari;Lal Muansangi;Satish Kumar Illa;Yaser Mushtaq Wani;Sabyasachi Mukherjee;Anupama Mukherjee
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.795-806
    • /
    • 2024
  • Objective: Karan Fries (KF), a high-producing composite cattle was developed through crossing indicine Tharparkar cows with taurine bulls (Holstein Friesian, Brown Swiss, and Jersey), to increase the milk yield across India. This composite cattle population must maintain sufficient genetic diversity for long-term development and breed improvement in the coming years. The level of linkage disequilibrium (LD) measures the influence of population genetic forces on the genomic structure and provides insights into the evolutionary history of populations, while the decay of LD is important in understanding the limits of genome-wide association studies for a population. Effective population size (Ne) which is genomically based on LD accumulated over the course of previous generations, is a valuable tool for e valuation of the genetic diversity and level of inbreeding. The present study was undertaken to understand KF population dynamics through the estimation of Ne and LD for the long-term sustainability of these breeds. Methods: The present study included 96 KF samples genotyped using Illumina HDBovine array to estimate the effective population and examine the LD pattern. The genotype data were also obtained for other crossbreds (Santa Gertrudis, Brangus, and Beefmaster) and Holstein Friesian cattle for comparison purposes. Results: The average LD between single nucleotide polymorphisms (SNPs) was r2 = 0.13 in the present study. LD decay (r2 = 0.2) was observed at 40 kb inter-marker distance, indicating a panel with 62,765 SNPs was sufficient for genomic breeding value estimation in KF cattle. The pedigree-based Ne of KF was determined to be 78, while the Ne estimates obtained using LD-based methods were 52 (SNeP) and 219 (genetic optimization for Ne estimation), respectively. Conclusion: KF cattle have an Ne exceeding the FAO's minimum recommended level of 50, which was desirable. The study also revealed significant population dynamics of KF cattle and increased our understanding of devising suitable breeding strategies for long-term sustainable development.

ADDITIVE AND HETEROSIS EFFECTS ON MILK YIELD AND BIRTH WEIGHT FROM CROSSBREEDING EXPERIMENTS BETWEEN HOLSTEIN AND THE LOCAL BREED IN BANGLADESH

  • Hirooka, H.;Bhuiyan, A.K.F.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.295-300
    • /
    • 1995
  • Data from purebred and crossbred cattle involving Holstein and the Local breed in Bangladesh were used to estimate the genetic effects on average daily milk yield and birth weight A total of 877 records on average daily milk yield for 4 types of breed groups and a total of 418 records on birth weight for 5 breed groups were analyzed. Two different methods were applied in this study; the least squares analysis of variance approach and the linear regression approach. Breed group effects were highly significant for both average daily milk yield and birth weight. The result showed that straightbred Holstein produced the highest milk yield and the 7/8 crosses ranked highest in birth weight For the two traits, the additive breed effect was highly significant, whereas the individual heterosis effect was not significant. Furthermore, this study showed a negative maternal heterosis for average daily milk yields and a positive maternal heterosis for birth weight Comparing the breed least squares means obtained from the linear regression approach revealed that straightbred Holstein produced the highest average milk yield and the 3/4 crosses were predicted to have the largest birth weight. It is indicated that the linear regression approach can adequately separate the genetic component of performance, estimate unknown crossbreeding parameters and predict unknown performance of crosses which are not include in the original data.

A Case of Congenital Progressive Bilateral Convergent & Divergent Strabismus with Unilateral Exophthalmus in Holstein Cattle (선천성 진행성 양측성 내외측성 사시 및 편측성 안구돌출증 홀스타인 1예)

  • Jung, Young-Hun;Hur, Tai-Young;Choe, Chang-Yong;Kang, Seog-Jin;Lee, Hyun-June;Ki, Kwang-Seok;Park, Yung-Sang;Suh, Guk-Hyun;Kim, Jong-Taek
    • Journal of Veterinary Clinics
    • /
    • v.29 no.4
    • /
    • pp.344-347
    • /
    • 2012
  • Bilateral convergent strabismus with exophthalmus(BCSE) is an eye disorder affecting many cattle breeds worldwide. BCSE is the most common in cattle at various types of strabismus. Divergent strabismus is of relatively low incidence than convergent strabismus. This report is the to shown a case of convergent and divergent strabismus with unilateral in the exophthalmus in a heifer Holstein cow. A female Holstein calf born with congenital progressive divergent strabismus in right eye and convergent strabismus in left eye was tested. Ocular and blood examination, and activity were checked from the first week, 8 month, and 16 month after birth. The ocular examination includes general inspection, fixation reflex and menace response. The general inspection is checking the degree of deviation of both eyes from the normal visual axis, which was determined by the amount of sclera permanently visible in the temporal corner of the eye. The stage is divided into 4 stages depending on the degree of deviation. The right eye shown in stage 4 continues after birth and the left eye shown stage 2, stage 3 and stage 4 at 1 week, 8 month and 16 month after birth, respectively. In fixation reflex and Menace response, both eye balls showed a normal response at 1 week, 8 month and 16 month after birth. Blood count and serum chemistry test were performed, but a specific factor was not detected outside the reference range.

Evaluation of the criteria to distinguish heifer from cow of Holstein cattle in abattoir (축산물 작업장에서 젖소 미경산 및 경산우 구별을 위한 비교 항목 평가)

  • Kim, Kyoung-Ho;Lee, Jung-Goo;Ra, Do-Kyung;Kim, Cheol-Wan;Byun, Jae-Won;Lee, Sung-Mo
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.1
    • /
    • pp.145-154
    • /
    • 2007
  • In Korea, it is the one of controversial problems to distinguish heifer from cow in slaughtered Holstein cattle. This study was conducted to evaluate the several criterions which could be used to discriminate heifer from cow. Some criterions have shown significant differences between heifer and cow in ante and post-mortem inspections(p<0.01). Firstly, the numbers of milk teeth of heifer and cow were $6.12{\pm}1.92$ ($Mean{\pm}Standard$ deviation) and $0.03{\pm}0.39$ respectively. The teat diameter(D) and length(L) of cow were $26.43{\pm}4.31mm$ and $47.76{\pm}6.89mm$ respectively. However, those of heifer were significantly smaller (D: $18.04{\pm}5.04mm$, L: $28.61{\pm}8.91mm$) than those of cow. The size of udder was $203.68{\pm}16.84mm$ in Holstein cow and $112.70{\pm}20.59mm$ in heifer. Secondly, the uterus size of cow was significantly bigger than that of heifer and caruncle in mucosa of uterus could be easy to be confirmed by necropsy inspection. It was also obvious that the folding and length of uterus body were significantly remarkable in cow. Lastly, the pelvic cavity was $196.33{\pm}10.01mm$ in heifer and $220.90{\pm}11.41mm$ in cow. The ossifying maturation of heifer was $2.64{\pm}0.82$ and $6.71{\pm}1.81$ in cow. As the results, this study can be helpful for meat inspectors to discriminate the non-delivery heifer from delivery cow in Holstein cattle.

Establishment of Genetic Characteristics and Individual Identification System Using Microsatellite loci in Domestic Beef Cattle (초위성체 DNA표지인자를 이용한 국내 육우집단의 품종특성 및 개체식별 체계설정)

  • Kim, Sang-Wook;Jang, Hee-Kyung;Kim, Kwan-Suk;Kim, Jong-Joo;Jeon, Jin-Tae;Yoon, Du-Hak;Kang, Seong-Ho;Jung, Hyo-Il;Cheong, Il-Cheong
    • Journal of Animal Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • DNA marker information is used to identify or distinguish cattle breeds or individual animal. The purpose of this study was to apply Bovine Genotypes Kit Version 1.1/2.1 to bovine DNA samples (National Institute of Animal Science) taken from Australian / American beef (n=148), Holstein beef (n=170) and Hanwoo cattle (n=177) bred in Jeongeub, Jeonbuk, Korea, so that it could distinguish Hanwoo breed. The Bovine Genotype Kits consist of 16 ISAG MS markers, which were used to build a database of genotypes in each group. Genotyping results were analyzed using MS Tool kit and Phylip program to create phylogenetic tree. The GeneClass 2.0 was used to estimate breed identification. These analyses found that this kit had 100% capacity to distinguish Hanwoo beef, 95.3% capacity to differentiate Australian / American beef and 90% capacity to identify Korean Holstein steer beef. Hence, it is expected that 16 commercial microsatellite markers is useful to categorizegenetic characteristics of Hanwoo breed and also identify Hanwoo individuals and the origin of beef. In particular, it is expected that these markers will be advantageous in discriminating domestic Holstein beef from Australian / Americanbeef.

Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle

  • Lee, SeokHyun;Dang, ChangGwon;Choy, YunHo;Do, ChangHee;Cho, Kwanghyun;Kim, Jongjoo;Kim, Yousam;Lee, Jungjae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.913-921
    • /
    • 2019
  • Objective: The objectives of this study were to compare identified informative regions through two genome-wide association study (GWAS) approaches and determine the accuracy and bias of the direct genomic value (DGV) for milk production traits in Korean Holstein cattle, using two genomic prediction approaches: single-step genomic best linear unbiased prediction (ss-GBLUP) and Bayesian Bayes-B. Methods: Records on production traits such as adjusted 305-day milk (MY305), fat (FY305), and protein (PY305) yields were collected from 265,271 first parity cows. After quality control, 50,765 single-nucleotide polymorphic genotypes were available for analysis. In GWAS for ss-GBLUP (ssGWAS) and Bayes-B (BayesGWAS), the proportion of genetic variance for each 1-Mb genomic window was calculated and used to identify informative genomic regions. Accuracy of the DGV was estimated by a five-fold cross-validation with random clustering. As a measure of accuracy for DGV, we also assessed the correlation between DGV and deregressed-estimated breeding value (DEBV). The bias of DGV for each method was obtained by determining regression coefficients. Results: A total of nine and five significant windows (1 Mb) were identified for MY305 using ssGWAS and BayesGWAS, respectively. Using ssGWAS and BayesGWAS, we also detected multiple significant regions for FY305 (12 and 7) and PY305 (14 and 2), respectively. Both single-step DGV and Bayes DGV also showed somewhat moderate accuracy ranges for MY305 (0.32 to 0.34), FY305 (0.37 to 0.39), and PY305 (0.35 to 0.36) traits, respectively. The mean biases of DGVs determined using the single-step and Bayesian methods were $1.50{\pm}0.21$ and $1.18{\pm}0.26$ for MY305, $1.75{\pm}0.33$ and $1.14{\pm}0.20$ for FY305, and $1.59{\pm}0.20$ and $1.14{\pm}0.15$ for PY305, respectively. Conclusion: From the bias perspective, we believe that genomic selection based on the application of Bayesian approaches would be more suitable than application of ss-GBLUP in Korean Holstein populations.