• Title/Summary/Keyword: Hollow-fiber Membrane

Search Result 425, Processing Time 0.021 seconds

A Study on the Potable Water Purification System with Pre-Ozone and Ultra Filtration Membrane of Hollow Fiber Type (전오존과 중공사형 한외여과막을 이용한 간이정수처리시스템에 관한 연구)

  • Kim, Min-Kuk;Chun, Yang-Kun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.196-204
    • /
    • 2005
  • The objective of this study is to evaluate the possibility to apply pre-ozone and membrane system for drinking water. This system is improved in fouling control by pre-ozone system. It is composed of ultrafiltration hollow fiber type membrane and ozone reactor. The result of this study is that the flux is increased about 10.7% and decreased in TMP by the pre-ozone. Also, backwashing pressure decreased about 18%. The optimum concentration of residual ozone is 0.3~0.5 ppm. During the period, the recovery ratio of this system was turned out to be 90% as the flowrate of effluent is $67.1m^3/day$. When the TMP and backwashing pressure was $0.85kg/cm^2$ and $1.10kg/cm^2$, this system was stable without sudden fouling. Finally, the quality of effluent is satisfied the guidelines for potable water quality such as turbidity, color, E.coli, Mn, Al, Fe and so on.

A Study on the Thermal Characteristics of Vacuum Membrane Distillation Module (VMD 모듈의 열성능 특성 연구)

  • Joo, Hong-Jin;Yang, Yong-Woo;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.23-31
    • /
    • 2014
  • This study was accomplished to get the foundation design data of VMD(Vacuum Membrane Distillation) system for Solar Thermal VMD plant. VMD experiment was designed to evaluate thermal performance of VMD using PVDF(polyvinylidene fluoride) hollow fiber hydrophobic membranes. The total membrane surface area in a VMD module is $5.3m^2$. Experimental equipments to evaluate VMD system consists of various parts such as VMD module, heat exchanger, heater, storage tank, pump, flow meter, micro filter. The experimental conditions to evaluate VMD module were salt concentration, temperature, flow rate of feed sea water. Salt concentration of feed water were used by aqueous NaCl solutions of 25g/l, 35g/l and 45g/l concentration. As a result, increase in permeate flux of VMD module is due to the increasing feed water temperature and feed water flow rate. Also, decrease in permeate flux of VMD module is due to increasing salinity of feed water. VMD module required about 590 kWh/day of heating energy to produce $1m^3/day$ of fresh water.

Industrial wastewater treatment by using of membrane

  • Razavi, Seyed Mohammad Reza;Miri, Taghi;Barati, Abolfazl;Nazemian, Mahboobeh;Sepasi, Mohammad
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.489-499
    • /
    • 2015
  • In this work, treatment of real hypersaline refinery wastewater by hollow fiber membrane bioreactor coupled with reverse osmosis unit was studied. The ability of HF-MBR and RO developed in this work, was evaluated through examination of the effluent properties under various operating conditions including hydraulic retention time and flux. Arak refinery wastewater was employed as influent of the bioreactor which consists of an immersed ultrafiltation membrane. The HF-MBR/RO was run for 6 months. Average elimination performance of chemical oxygen demand, biological oxygen demand, total suspended solids, volatile suspended solids, total dissolved soild and turbidity were obtained 82%, 89%, 98%, 99%, 99% and 98% respectively. Highly removal performance of oily contaminant, TDS and the complete retention of suspends solids implies good potential of the HF-MBR/RO system for wastewater refinement.

Pervaporation Separation of Water-Isopropyl Alcohol Mixtures Using PVA/PAN Hollow Fiber Composite Membranes (PVA/PAN 중공사 복합막을 이용한 IPA수용액의 투과증발분리)

  • Kim, Ji Seon;Cho, Eun Hye;Kang, Su Yeon;Cheong, Seong Ihl;Park, Hun Whee;Seo, Chang Hee;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.170-175
    • /
    • 2013
  • Poly (vinyl alcohol) (PVA) solution containing the glutaraldehyde (GA) as a crosslinking agent was coated onto the polyacrylonitrile (PAN) hollow fiber membrane as the supporter. Pervaporation experiments were carried out to characterize the prepared PVA/PAN composite membrane for water-isopropyl alcohol mixture. The flux and separation factor were measured at 30, 50, $90^{\circ}C$ for the feed mixture of aqueous 85 wt% IPA solution with varying the reaction temperature and composition of coating solutions. Typically the flux showed 1,870 $g/m^2{\cdot}hr$ at $90^{\circ}C$ feed mixture and the coating concentration of 3.5 wt% and the highest separation factor of 804 was obtained at $30^{\circ}C$ feed mixture and the coating concentration of 7 wt% as well.

Performance evaluation of forward osmosis (FO) hollow fiber module with various operating conditions (중공사막 모듈을 이용한 정삼투 공정에서의 운영조건 변화에 따른 성능평가)

  • Kim, Bongchul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.357-361
    • /
    • 2018
  • Forward osmosis (FO) process has been attracting attention for its potential applications such as industrial wastewater treatment, wastewater reclamation and seawater desalination. Particularly, in terms of fouling reversibility and operating energy consumption, the FO process is assumed to be preferable to the reverse osmosis (RO) process. Despite these advantages, there is a difficulty in the empirical step due to the lack of separation and recovery techniques of the draw solution. Therefore, rather than using FO alone, recent developments of the FO process have adapted a hybrid system without draw solution separation/recovery systems, such as the FO-RO osmotic dilution system. In this study, we investigated the performance of the hollow fiber FO module according to various operating conditions. The change of permeate flow rate according to the flow rates of the draw and feed solutions in the process operation is a factor that increases the permeate flow rate, one of the performance factors in the positive osmosis process. Our results reveal that flow rates of draw and feed solutions affect the membrane performance, such as the water flux and the reverse solute flux. Moreover, use of hydraulic pressure on the feed side was shown to yield slightly higher flux than the case without applied pressure. Thus, optimizing the operating conditions is important in the hollow fiber FO system.

Preparation of Asymmetric PES Hollow Fiber Gas Separation Membranes and Their $CO_2/CH_4$ Separation Properties (비대칭구조의 폴리이서설폰 기체분리용 중공사막의 제조 및 이를 이용한 $CO_2/CH_4$ 분리특성)

  • Park, Sung-Ryul;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • Huge amount of $CH_4$ mixtures has been emitted from landfills and organic wastes via anaerobic digestion. The recovery of high purity $CH_4$ from these gases has two merits: reduction of green house gases and production of renewable fuels. Membrane technology based on polymeric materials can be used in this application. In this study, asymmetric gas separation hollow fiber membranes were fabricated to develop the membrane-based bio-gas purification process. Polyethersulfone (PES) was chosen as a polymer materials because of high $CO_2$ permeability of 3.4 barrer and $CO_2/CH_4$ selectivity of 50[1]. Acetone was used as a non-solvent additive because of its unique swelling power for PES and highly volatile character. The prepared PES hollow fiber showed excellent separation properties: 36 GPU of $CO_2$ permeance and 46 of $CO_2/CH_4$ selectivity at optimized preparation conditions: 9wt% acetone content, 10cm air-gap and 4wt% PDMS coating processes. With the PES hollow fiber membranes developed, mixed $CO_2/CH_4$ test was done by changing various operating conditions such as pressures and feed compositions to meet the highest recovery of CH4 with 95% purity. High $CH_4$ recovery of 58 wt% was observed at 10 atm feed pressure for the 50 vol% of $CO_2$ in $CO_2/CH_4$ mixture.

Ethanol Productivity in a Hollow Fiber Membrane Module Using High Density of Saccharomyces cerevisiae (실관반응기 내의 Saccharomyces cerevisiae의 고농도 배양을 이용한 에탄올 생산성)

  • 장호남;양지원박용석정봉현
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.67-71
    • /
    • 1992
  • We studied a continuous production of ethanol by Saccharomyces cerevisiae in a hollow fiber membrane bioreactor which consisted of 50 polypropylene fibers and 3 teflon fibers. The produced $CO_2$ was removed through the teflon fibers and excess biomass was removed through the shell side. We obtained the cell and ethanol concentrations of 266g/L and 205g/L based on the shell-side volume. A nitrogen deficient medium resulted in too low an ethanol productivity to be applied to a practical process.

  • PDF

A basic study on the reuse of shipboard wastewater(II) -An advanced treatment of shipboard wastewater by Hollow fiber UF and MF filtration- (선박용수의 재사용에 관한 기초연구(II) -중공사모듈 UF MF 필터에 의한 선박폐수의 고도처리-)

  • 김인수;김억조;김동근;고성정;안종수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The Microfiltration and Ultrafiltration were used to treat effluent of secondary municipal wastewater treatment system(Sequencing Batch Reactor). The cross-flow hollow fiber, UF 500,000(NMWC) and MF 0.65$\mu$ membrane were selected as suitable membrane. Short term and long term fouling effect were measured as a factor of flux decrease and the fouling removal effect of mixing air bubble in the penetrant was studied. The removal of anionic sulfactants before and after formation of micelle with several kinds of oil were checked. The test results show that removal of TOC was 70~80%, TN 28% and TP 16%. The decrease of flux due to fouling were 85%(UF) and 90%(MF) after running of 100hrs. The removal of anionic sulfactants were 60~70% notwithstanding micelle or not.

  • PDF

Characteristic of the Permeation Flux of Hollow Fiber Membranes by Process Pressures Change (공정압 변화에 따른 중공사막의 투과플럭스 특성)

  • Lee, Yong-Taek;Kim, Nam-Su;Shin, Dong-Ho
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.318-328
    • /
    • 2007
  • This study was carried out to evaluate the performance of the separate membrane (HF; hollow fiber membrane with polysulfone) process applied with the external membrane types, internal pressure membrane types and external-internal types according to the variations of pressure and membrane pore size in the purification treatment process of the lake water. The maximum permeate flux was average values of 282 LMH and 234 LMH with the pore size of 0.3 and 0.05 ${\mu}m$ respectively in the external pressure membrane process, and 443 LMH and 522 LMH with the pore size of 0.3 and $0.05{\mu}m$ respectively in the internal pressure membrane process. In addition, the maximum permeate flux of the process that was applied with external and internal membrane pressure simultaneously showed the average values of 674 LMH with the pore size of $0.3{\mu}m$, and 648 LMH with the pore size of $0.05{\mu}m$. Therefore, maximum yield per unit area is supposed when the separate membrane that was applied with external and internal pressure simultaneously are used to treat the lake water.