• 제목/요약/키워드: Hollow carbon spheres

검색결과 7건 처리시간 0.025초

다양한 직경의 속이 빈 탄소구체의 제조 및 리튬 저장 특성 (Synthesis of Hollow Carbon Spheres with Various Diameters and Their Lithium Storage Properties)

  • 신슬기;조혁래;정용재;구상모;오종민;신원호
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.10-15
    • /
    • 2023
  • The carbonaceous materials have attracted much attention for utilization of anode materials for lithium-ion batteries. Among them, hollow carbon spheres have great advantages (high specific capacity and good rate capability) to replace currently used graphite anode materials, due to their unique features such as high surface areas, high electrical conductivities, and outstanding chemical and thermal stability. Herein, we have synthesized various sizes of hollow carbon spheres by a facile hardtemplate method and investigated the anode properties for lithium-ion batteries. The obtained hollow carbon spheres have uniform diameters of 350 ~ 600 nm by varying the template condition, and they do not have any cracks after the optimization of the process. Increasing the diameter of hollow carbon spheres decreases their specific capacities, since the larger hollow carbon spheres have more useless spaces inside that could have a disadvantage for lithium storage. The hollow carbon spheres have outstanding rate and cyclic performance, which is originated from the high surface area and high electrical properties of the hollow carbon spheres. Therefore, hollow carbon spheres with smaller diameters are expected to have higher specific capacities, and the noble channel structures through various doping approaches can give the great possibility of high lithium storage properties.

폴리스티렌 구형입자를 주형으로 이용한 할로우 메조포러스 질화탄소 구형입자의 합성 (Synthesis of Hollow Mesoporous Carbon Nitride Spheres Using Polystyrene Spheres as Template)

  • 박성수;하창식
    • 접착 및 계면
    • /
    • 제15권2호
    • /
    • pp.63-68
    • /
    • 2014
  • 주형으로 구형의 폴리스티렌을 사용하고 질소와 탄소원으로 시안아미드를 사용하여 열처리 과정을 거친 후 구형의 할로우 메조포러스 질화탄소 물질을 합성하였다. 이때 할로우 메조포러스 질화탄소 물질을 합성하는 과정에서 실리카와 같은 무기물 주형을 사용하지 않기 때문에 이차적인 실리카 제거 공정이 필요 없고 용매를 전혀 사용하지 않는다. 구형의 폴리스티렌 입자는 약 170 nm 크기였고 그리고 할로우 메조포러스 질화탄소 구형입자의 할로우 직경은 약 82 nm, 벽 두께는 약 13 nm이었다. 또한 할로우 메조포러스 질화탄소 물질의 표면적, 나노세공 크기, 세공부피는 각각 $188m^2g^{-1}$, 3.8 nm, $0.35cm^3g^{-1}$이었다. 한편, 할로우 벽은 흑연구조와 유사한 박막층의 쌓임 구조를 가졌으며 이러한 할로우 메조포러스 질화탄소 물질은 연료전지, 촉매, 광촉매, 전자방출 소자 등과 같은 분야에 매우 높은 응용 가능성을 가질 것으로 기대된다.

Ni Nanoparticles-hollow Carbon Spheres Hybrids for Their Enhanced Room Temperature Hydrogen Storage Performance

  • Kim, Jin-Ho;Han, Kyu-Sung
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.550-557
    • /
    • 2013
  • A glucose hydrothermal method is described for preparing hollow carbon spheres (HCS), which have a regular morphology and a high Brunauer-Emmett-Teller surface area of 28.6 m2/g. Scanning electron microscopy shows that they have thin shells and diameter between 2 and 8 ${\mu}m$. The HCSs were modified for the enhanced room temperature hydrogen storage by employing Ni nanoparticles on their surface. The Ni-decorated HCSs were characterized by X-ray diffraction, transmission electron microscopy coupled with an energy dispersive spectroscope, and an inductively coupled plasma spectrometer, indicating that fine and well-distributed Ni nanoparticles can be accomplished on the HCSs. The hydrogen uptake capacity in HCSs with and without Ni loading was evaluated using a high-pressure microbalance at room temperature under a hydrogen pressure upto 9 MPa. As much as 1.23wt.% of hydrogen can be stored when uniformly distributed Ni nanoparticles are formed on the HCSs, while the hydrogen uptake capacity of as-received HCSs was 0.41 wt.%. For Ni nanoparticle-loaded HCSs, hydrogen molecules could be easily dissociated into atomic hydrogen and then chemically adsorbed by the sorbents, leading to an enhanced capacity for storing hydrogen.

MnO2-HCS 복합체를 이용한 슈퍼커패시터의 전기화학적 특성 (Electrochemical Properties of Using MnO2-HCS Composite for Supercapacitor)

  • 김은미;정상문
    • 청정기술
    • /
    • 제24권3호
    • /
    • pp.183-189
    • /
    • 2018
  • 중공형 구형 탄소(hollow carbon spheres, HCS) 또는 구형 탄소(carbon spheres, CS)는 수열합성법에 의해 제조되었고 $MnO_2$를 증착하기 위한 탄소 지지체로 사용하였다. $MnO_2$는 화학적 레독스 증착법에 의해 HCS 또는 CS 표면에 증착하였다. 화학적 산화환원 증착법은 미립자 지지체의 표면에 다른 산화물 합성에 특히 효과적이다. $MnO_2$는 HCS 또는 CS의 표면에 일정한 슬릿 모양의 분포를 보였고 HCS 표면에서 보다 엉성한 슬릿 모양의 $MnO_2$ 입자가 생성되었다. $MnO_2-HCS$$20mv\;s^{-1}$의 스캔 속도에서 초기 사이클에서 약 $164.1F\;g^{-1}$의 정전용량을 나타내었고 1000 사이클 후에는 약 $141.3F\;g^{-1}$의 정전용량을 나타내었다. 1000 사이클 기준으로 $MnO_2-HCS$$MnO_2-CS$는 각각 86%와 78%의 용량유지율을 나타내었다. 이것은 HCS 표면에서 엉성한 슬릿모양의 $MnO_2$의 성장이 전해질의 흐름 및 전해질 내의 $Na^+$ 이온의 흡탈착이 보다 용이하여 나타난 결과로 생각된다.

중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성 (Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites)

  • 김종석
    • 공업화학
    • /
    • 제32권6호
    • /
    • pp.690-694
    • /
    • 2021
  • 본 연구에서는 글루코스를 전구체로 사용하여 수열합성방법을 통해 구형탄소입자(carbon sphere, CS)를 제조하였다. 200 nm, 500 nm, 1,200 nm 크기의 중공형 TiO2 (H-TiO2)는 CS/TiO2 core-shell 구조를 졸-겔 법과 열처리 방법으로 합성하였다. FE-SEM, HR-TEM, XRD 분석을 통하여 H-TiO2의 물리적 특성을 측정하였다. H-TiO2/polyacrylate (PA) 복합체의 UV-Vis-NIR 분석을 통해 색상변화와 일사반사율을 얻었으며, 실험실에서 제작한 차열온도 측정기를 통해 차열온도를 측정하였다. H-TiO2/PA 복합체는 열전도도가 낮은 건조공기로 채워진 중공구조에 의한 우수한 차열 특성과 근적외선 반사율을 보였다. H-TiO2/PA 복합체에서 중공구의 크기가 증가함에 따라 열차단 특성이 증가하였다. 1,200 nm 중공 크기의 H-TiO2를 혼합한 PA 필름에서 측정된 차열온도가 투명 유리판의 차열온도보다 26 ℃ 감소하였다.

Microstructural changes of polyacrylonitrile-based carbon fibers (T300 and T700) due to isothermal oxidation (1): focusing on morphological changes using scanning electron microscopy

  • Oh, Seong-Moon;Lee, Sang-Min;Kang, Dong-Su;Roh, Jae-Seung
    • Carbon letters
    • /
    • 제18권
    • /
    • pp.18-23
    • /
    • 2016
  • Polyacrylonitrile (PAN)-based carbon fibers have high specific strength, elastic modulus, thermal resistance, and thermal conductivity. Due to these properties, they have been increasingly widely used in various spheres including leisure, aviation, aerospace, military, and energy applications. However, if exposed to air at high temperatures, they are oxidized, thus weakening the properties of carbon fibers and carbon composite materials. As such, it is important to understand the oxidation reactions of carbon fibers, which are often used as a reinforcement for composite materials. PAN-based carbon fibers T300 and T700 were isothermally oxidized in air, and microstructural changes caused by oxidation reactions were examined. The results showed a decrease in the rate of oxidation with increasing burn-off for both T300 and T700 fibers. The rate of oxidation of T300 fibers was two times faster than that of T700 fibers. The diameter of T700 fibers decreased linearly with increasing burn-off. The diameter of T300 also decreased with increasing burn-off but at slower rates over time. Cross-sectional observations after oxidation reactions revealed hollow cores in the longitudinal direction for both T300 and T700 fibers. The formation of hollow cores after oxidation can be traced to differences in the fabrication process such as the starting material and final heat treatment temperature.

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.