DOI QR코드

DOI QR Code

폴리스티렌 구형입자를 주형으로 이용한 할로우 메조포러스 질화탄소 구형입자의 합성

Synthesis of Hollow Mesoporous Carbon Nitride Spheres Using Polystyrene Spheres as Template

  • Park, Sung Soo (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • 투고 : 2014.05.12
  • 심사 : 2014.06.16
  • 발행 : 2014.06.30

초록

주형으로 구형의 폴리스티렌을 사용하고 질소와 탄소원으로 시안아미드를 사용하여 열처리 과정을 거친 후 구형의 할로우 메조포러스 질화탄소 물질을 합성하였다. 이때 할로우 메조포러스 질화탄소 물질을 합성하는 과정에서 실리카와 같은 무기물 주형을 사용하지 않기 때문에 이차적인 실리카 제거 공정이 필요 없고 용매를 전혀 사용하지 않는다. 구형의 폴리스티렌 입자는 약 170 nm 크기였고 그리고 할로우 메조포러스 질화탄소 구형입자의 할로우 직경은 약 82 nm, 벽 두께는 약 13 nm이었다. 또한 할로우 메조포러스 질화탄소 물질의 표면적, 나노세공 크기, 세공부피는 각각 $188m^2g^{-1}$, 3.8 nm, $0.35cm^3g^{-1}$이었다. 한편, 할로우 벽은 흑연구조와 유사한 박막층의 쌓임 구조를 가졌으며 이러한 할로우 메조포러스 질화탄소 물질은 연료전지, 촉매, 광촉매, 전자방출 소자 등과 같은 분야에 매우 높은 응용 가능성을 가질 것으로 기대된다.

Hollow mesoporous carbon nitride material with sphere shape was synthesized using polystyrene sphere as template and cyanamide as nitrogen and carbon atom sources via thermal treatment process. The process of the silica removal is not necessary because silica as template is not in use for the synthesis of hollow mesoporous carbon nitride material and any solvents are also not in use. The size of polystyrene spheres was about 170 nm. Hollow diameter and wall thickness were 82 nm and 13 nm, respectively, in hollow mesoporous carbon nitride sphere. Surface area, mesopore size and pore volume of hollow mesoporous carbon nitride material was $188m^2g^{-1}$, 3.8 nm and $0.35cm^3g^{-1}$, respectively. The wall in hollow sphere has graphitic structure. Hollow mesoporous carbon nitride material has potential applications in the area of fuel cell, catalysis, photocatalysis, electroemmision device, etc.

키워드

참고문헌

  1. Q. Li, J. Yang, D. Feng, Z. Wu, Q. Wu, S. S. Park, C.-S. Ha, and D. Zhao, Nano Res., 3, 632 (2010). https://doi.org/10.1007/s12274-010-0023-7
  2. M. Kawaguchi, S. Yagi, and H. Enomoto, Carbon, 42, 345 (2004). https://doi.org/10.1016/j.carbon.2003.11.004
  3. V. N. Khabashesku, J. L. Zimmerman, and J. L. Margrave, Chem. Mater., 12, 3264 (2000). https://doi.org/10.1021/cm000328r
  4. M. H. Huynh, M. A. Hiskey, J. G. Archuleta, and E. L. Roemer, Angew. Chem., Int. Ed., 44, 737 (2005). https://doi.org/10.1002/anie.200461758
  5. C. Pevida, T. C. Drage, and C. E. Snape, Carbon, 46, 1464 (2008). https://doi.org/10.1016/j.carbon.2008.06.026
  6. F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, New J. Chem., 31, 1455 (2007). https://doi.org/10.1039/b618555j
  7. M. Kim, S. Hwang, and J.-S. Yu, J. Mater. Chem., 17, 1656 (2007). https://doi.org/10.1039/b702213a
  8. X. Chen, Y.-S. Jun, K. Takanabe, K. Maeda, K. Domen, X. Fu, M. Antonietti, and X. Wang, Chem. Mater., 21, 4093 (2009). https://doi.org/10.1021/cm902130z
  9. A. Fischer, J. O. Muller, M. Antonietti, and A. Thomas, ACS Nano, 2, 2489 (2008). https://doi.org/10.1021/nn800503a
  10. F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas, Angew. Chem. Int. Ed., 45, 4467 (2006). https://doi.org/10.1002/anie.200600412
  11. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., 13, 677 (2001). https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  12. H. F. Yang and D. Y. Zhao, J. Mater. Chem., 15, 1217 (2005).
  13. F. Schuth and W. Schmidt, Adv. Mater., 14, 629 (2002). https://doi.org/10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B
  14. F. Schuth, Angew. Chem., Int. Ed., 42, 3604-3622 (2003). https://doi.org/10.1002/anie.200300593
  15. A. H. Lu and F. Schuth, Adv. Mater., 18, 1793- 1805 (2006). https://doi.org/10.1002/adma.200600148
  16. A. Thomas, F. Goettmann, and M. Antonietti, Chem. Mater., 20, 738 (2008). https://doi.org/10.1021/cm702126j
  17. M. Tiemann, Chem. Mater., 20, 961 (2008). https://doi.org/10.1021/cm702050s
  18. Y.-S. Jun, W. H. Hong, M. Antonietti, and A. Thomas, Adv. Mater., 21, 1 (2009).
  19. A. Vinu, Adv. Funct. Mater., 18, 816 (2008). https://doi.org/10.1002/adfm.200700783
  20. S. S. Park, S.-W. Chu, C. Xue, D. Zhao, and C.-S. Ha, J. Mater. Chem., 21, 10801 (2011). https://doi.org/10.1039/c1jm10849b
  21. E. Mathlowitz, J. S. Jacob, Y. S. Jong, and G. P. Carino, Nature, 386, 410 (1997). https://doi.org/10.1038/386410a0
  22. H. Huang and E. E. Remsen, J. Am. Chem. Soc., 121, 3805 (1999). https://doi.org/10.1021/ja983610w
  23. F. Caruso, Adv. Mater., 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  24. J. Jiang, Q. Gao, Z. Zheng, K. Xia, and J. Hu, Inter. J. Hydro. Energy, 35, 210 (2010). https://doi.org/10.1016/j.ijhydene.2009.10.042
  25. X. Bai, J. Li, and C. Cao, App. Sur. Sci., 256, 2327 (2001).
  26. J. Li, C. Cao, and H. Zhu, Diamond Relat. Mater., 16, 359 (2007). https://doi.org/10.1016/j.diamond.2006.07.003
  27. C. Li, X. Yang, B. Yang, Y. Yan, and Y. Qian, Mater. Chem. Phys. 103, 427 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.057
  28. J. H. Yang, D. H. Lee, M. H. Yum, Y. S. Shin, E. J. Kim, C.-Y. Park, M. H. Kwon, C. W. Yang, J.-B. Yoo, H.-J. Song, H.-J. Shin, Y.-W. Jin, and J.-M. Kim, Carbon, 44, 2219 (2006). https://doi.org/10.1016/j.carbon.2006.02.036
  29. M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, and M. Antonietti, J. Am. Chem. Soc., 135, 7118 (2013). https://doi.org/10.1021/ja402521s
  30. S.-W. Chu, A-R. Sung, S. S. Park, and C.-S. Ha, J. Adhes. Inter., 13(4), 151 (2012). https://doi.org/10.17702/jai.2012.13.4.151