DOI QR코드

DOI QR Code

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites

중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성

  • Kim, Jong Seok (School of Chemical Engineering, Jeonbuk National University)
  • 김종석 (전북대학교 화학공학부)
  • Received : 2021.10.22
  • Accepted : 2021.11.22
  • Published : 2021.12.10

Abstract

Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

본 연구에서는 글루코스를 전구체로 사용하여 수열합성방법을 통해 구형탄소입자(carbon sphere, CS)를 제조하였다. 200 nm, 500 nm, 1,200 nm 크기의 중공형 TiO2 (H-TiO2)는 CS/TiO2 core-shell 구조를 졸-겔 법과 열처리 방법으로 합성하였다. FE-SEM, HR-TEM, XRD 분석을 통하여 H-TiO2의 물리적 특성을 측정하였다. H-TiO2/polyacrylate (PA) 복합체의 UV-Vis-NIR 분석을 통해 색상변화와 일사반사율을 얻었으며, 실험실에서 제작한 차열온도 측정기를 통해 차열온도를 측정하였다. H-TiO2/PA 복합체는 열전도도가 낮은 건조공기로 채워진 중공구조에 의한 우수한 차열 특성과 근적외선 반사율을 보였다. H-TiO2/PA 복합체에서 중공구의 크기가 증가함에 따라 열차단 특성이 증가하였다. 1,200 nm 중공 크기의 H-TiO2를 혼합한 PA 필름에서 측정된 차열온도가 투명 유리판의 차열온도보다 26 ℃ 감소하였다.

Keywords

Acknowledgement

이 논문은 전북대학교 학술연구비(2020년)에 의하여 수행되었으며 이에 감사드립니다.

References

  1. M. Santamouri, C. Cartalis, A. Synnefa, and D. Kolokosta, On the impact urban heat island and global warming on the power demand and electricity consuming of building-A review, Ener. Build., 98, 119-124 (2015). https://doi.org/10.1016/j.enbuild.2014.09.052
  2. C. Manoli, S. Fatichi, M. Scapfer, K. Yu, T. W. Crowther, N. Meili, P. Burlando, G. G. Katul, and E. Zeid, Magnitude of urban heat islands largely explained by climate and population, Science, 573, 55-60 (2019).
  3. C. Mora, B. Dousset, I. Caldwall, F. E. Powell, R. C. Geronimo, C. R. Bielecki, C. W. Counsell, B. S. Dietrich, E. T. Johnston, L. V. Lois, M. P. Lucas, M. M. McKenzie, A. G. Shes, H. Tseng, T. W. Giambelluca, L. R. Reon, E. Hwakins, and C. Trauernicht, Global risk of deadly heat, Nat. Clim. Chang., 7, 501-507 (2017). https://doi.org/10.1038/nclimate3322
  4. I. Kousis and A. L. Pisello, For the mitigation of urban heat island and urban noise island: two simutaneous sides of urban discofort, Environ. Res. Lett, 15, 1-30 (2020).
  5. M. Santamouris, Cooling the cities-a review of reflective and green roof mitigaton technologies to fight heat island and improve comfort in urban environments, Sol. Energy, 102, 682-703 (2014). https://doi.org/10.1016/j.solener.2012.07.003
  6. B. Mahltiga, H. Bottchera, K. Rauchb, U. Dieckmannb, R. Nitschec and T. Fritz, Optimized UV protecting coatings by combination of organic and inorganic UV absorbers, Thin Solid Films., 485, 108-114 (2005). https://doi.org/10.1016/j.tsf.2005.03.056
  7. E. S. Cozza, M. Comite, G. Di Tanna and S. Vicini, NIR-reflecting properties of new paints for energy-efficient buildings, Sol. Energy, 116, 108-116 (2015). https://doi.org/10.1016/j.solener.2015.04.004
  8. C. Guo, S. Yin, and T. Sato, Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process, J. Mater. Chem., 21, 5099-5105 (2011). https://doi.org/10.1039/c0jm04379f
  9. J. Wang, Y. Li, Y. Byon, S. Mei, and G. Zhang, Synthesis and characterization of NiTiO3 yellow nano pigment with high solar radiation reflection efficiency, Powder Technol., 235, 303-306 (2013). https://doi.org/10.1016/j.powtec.2012.10.044
  10. X. Lu, G. Yu, B. Hu, J. Zhang, and Q. Dong, Preparation and characterization of transparent fluorocarbon emulsion doped with antimony tin oxide and TiO2 as thermal-insulating and self-cleaning coating, J. Coat. Technol. Res., 11, 567-574 (2014). https://doi.org/10.1007/s11998-013-9550-y
  11. S. Soumya, P. Mohamed, K. Mohans, and S. Ananthakumar, Enhanced near-infrared reflectance and functional characteristics of Al-doped ZnO nano-pigments embedded PMMA coatings, Sol. Energy Mater. Sol. Cells., 143, 335-346 (2015). https://doi.org/10.1016/j.solmat.2015.07.012
  12. C. Ye, X. Wen, J. Lan, Z. Cai, P. Pi, S. Xu, and Y. Qian, Surface modification of light hollow polymer microspheres and its application in external wall thermal insulation coatings, Pigment Resin. Technol., 45, 45-51 (2016). https://doi.org/10.1108/PRT-01-2015-0006
  13. K. Wu, S. Xiang, W. Zhi, R. Bian, C. Wang, and D. Cai, Preparation and characterization of UV curable waterborne poly (urethane-acrylate)/antimony doped tin oxide thermal insulation coatings by sol-gel process, Prog. Org. Coat., 113, 39-46 (2017). https://doi.org/10.1016/j.porgcoat.2017.08.004
  14. H. S. Kil and S. W. Rhee, Synthesis and infrared light reflecting characteristic of TiO2/mica hybrid composites, Appl. Chem. Eng., 27, 16-20 (2016). https://doi.org/10.14478/ACE.2015.1073
  15. T. Mariappan, A. Agarwal, and S. Ray, Influence of titanium dioxide on the thermal insulation of waterborne intumescent fire protective paints to structural steel, Prog. Org. Coat., 111, 67-74 (2017). https://doi.org/10.1016/j.porgcoat.2017.04.036
  16. Q. Gao, X. Wu, Z. Xia, and Y. Fan, Coating mechanism and near-infrared reflection property of hollow fly ash bead/TiO2 composite pigment, Powder Technol., 305, 433-439 (2017). https://doi.org/10.1016/j.powtec.2016.10.037
  17. H. J. Kim, H. J. Lee, and D. S. Kim, Hollow TiO2 flake prepared from TiO2 coated glass flake for solar heat protection and their thermal performance, Mater. Des., 150, 188-192 (2018). https://doi.org/10.1016/j.matdes.2018.04.043
  18. D. W. Kim, Y. K. Ma, and J. S. Kim, Heat shield of nanostructural-regulated Fe2O3/TiO2 composites filled with polyacrylate paint, Appl. Chem. Eng., 31, 43-48 (2020).
  19. D. A. Hanaor, I. Chironi, I. Karatchevtseva, G. Triani, and C. C. Sorrell, Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide, Adv. Appl. Ceram., 111, 149-158 (2012). https://doi.org/10.1179/1743676111y.0000000059
  20. Y. Bao, Q. Kang, and J. Ma, Structural regulation of hollow spherical TiO2 by varying titanium source amount and their thermal insulation property, Colloids Surf. A, 537, 69-75 (2018). https://doi.org/10.1016/j.colsurfa.2017.10.019
  21. Q. Kang, Y. Bao, M. Li, and J. Ma, Effect of wall thickness of hollow TiO2 spheres on properties of polyacrylate film: Thermal insulation, UV-shielding and mechanical property, Prog. Org. Coat., 112, 153-161 (2017). https://doi.org/10.1016/j.porgcoat.2017.04.045
  22. O. Sandin, J. Nordin, and M. Jonsson, Reflective properties of hollow microspheres in cool roof coatings, J. Coat. Technol. Res., 14, 817-821 (2017). https://doi.org/10.1007/s11998-017-9973-y
  23. J. Long, C. Jiang, J. Zhu, Q. Song, and J. Hu, Controlled TiO2 coating on hollow glass microspheres and their reflective thermal insulation properties, Particuology, 49, 33-39 (2020). https://doi.org/10.1016/j.partic.2019.03.002
  24. M. Li, W. Li, and S. Liu, Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method, J. Mater. Res., 27, 1117-1123 (2012). https://doi.org/10.1557/jmr.2011.447
  25. R. S. Berns, Billmeyer and Saltzman, Principles of Color Technology, 3th ed, 109-113, John Wily & Sons, NY, USA (2000).
  26. J. Yuan, Z. An, B. Li, and J. Zhang, Facile aqueous synthesis and thermal insulating properties of low-density glass/TiO2 core/shell composites hollow spheres, Particuology, 10, 475-479 (2012). https://doi.org/10.1016/j.partic.2011.08.005
  27. P. Ruckdeschel, A. Philipp, and M. Retsch, Understanding thermal insulation in porous, particulate materials, Adv. Funct. Mater., 27, 1702256 (2017). https://doi.org/10.1002/adfm.201702256