• Title/Summary/Keyword: Hollow Type Joint

Search Result 26, Processing Time 0.02 seconds

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

An Experimental Study on the Behavior of Beam-to-Column Joints for Modular Steel Frame (해체.조립식 모듈러 철골조 기둥-보 접합부의 거동에 관한 실험적 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • The object of this paper is to evaluate on behavior the experimentally of beam-to-column joints for modular steel frame with the hollow structural steel section to LEB C-shape. Beam-to-column joints carried out test on the joint shape bracket-type and welded-type to consideration which the joints for modular steel frame was capacity, deformation and failure mode. Test of results, the beam-column joints decided to the lateral buckling strength in LEB C-shape regardless of joint-shape and joint failure. The strength & stiffness for joints increase as the bracket-thickness. The results from theory of lateral buckling are compared to the experimental results. The ratio of experimental results to theory value is $0.83{\sim}0.95$ in the case of bracket-type and welded-type of $0.87{\sim}0.9$, indicating an accurate and safe estimation.

  • PDF

A Study on Punching Shear of Column-Foundation Joint Connection for Reinforced Steel Base Plate (Base Plate로 보강된 기둥-기초 접합부의 뚫림전단강도 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, the RC column-based joint connection part carry out loading test by reinforced hollow or extended Base Plate in order to confirm that RC joint punching shear reinforcement effect of applying the Base Plate. Base Plate thickness, extension length, size, and type as the variable, Base Plate suitable for the stress distribution and shape and dimensions confirmed through experiment and then reinforcing effect was analyzed. Experimentally, vertical load transmitted to the Base Plate from column to foundation is effective to stress distribution and then, type of hollow reinforcement more efficient than a closed. Through experiment, improve performance and ductility due to reinforcement and relative to the thickness of the existing foundation reduced even showed better performance than the existing. The behavior of the reinforced specimens be able to induce from brittle to ductile. Experiment on loading to destroy performed the pattern of cracks, destruction aspect before and after reinforcement.

Modelling and classification of tubular joint rigidity and its effect on the global response of CHS lattice girders

  • Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.677-698
    • /
    • 2005
  • In engineering practice, tubular connections are usually assumed pinned or rigid. Recent research showed that tubular joints may exhibit non-rigid behavior under axial or bending loads. This paper is concerned with establishing a new classification for tubular joints and investigating the effect of joint rigidity on the global behavior of CHS (Circular Hollow Section) lattice girders. Parametric formulae for predicting tubular joint rigidities are proposed, which are based on the finite element analyses through systematic variation of the main geometric parameters. Comparison with test results proves the reliability of these formulae. By considering the deformation patterns of respective parts of Vierendeel lattice girders, the boundary between rigid and semirigid tubular connections is built in terms of joint bending rigidity. In order to include characteristics of joint rigidity in the global structural analysis, a type of semirigid element which can effectively reflect the interaction of two braces in K joints is introduced and validated. The numerical example of a Warren lattice girder with different joint models shows the great effect of tubular joint rigidities on the internal forces, deformation and secondary stresses.

A Study on Development of Modular System using Light-weighted Structure Members (경량형강을 사용한 모듈러 시스템 개발에 관한 연구)

  • Zheng, Sheng-Lin;Ju, Gi-Su;Park, Sung-Moo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.43-48
    • /
    • 2008
  • The object of this paper is to evaluate on constructability of modular steel frame with the hollow structural steel section to LEB C-shape. A modular building is built with factory-manufacture and site-construction. The advantage of a Modular building presents that enhanced building quality, shortened construction period and easy at an expansion and enlargement for buildings but also has demerits such as size restriction of the modular units according to the Road Traffic Law and Inflexibility of the unit composition. So in this study we use light-weighted structure members with bolted joint for easy Knock-down and traffic, also we evaluated the constructability of this bolted joints type modular buildings.

  • PDF

Ultimate Strength Interaction of Steel Tubular T-Joint Subjected to Concurrent Action of Compression and Bending (압축과 휨을 동시에 받는 강관 T조인트 극한강도 상호작용)

  • Kim, Kyung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.298-303
    • /
    • 2016
  • Owing to the advantages of reduced weight and wind effect, the space-framed towers that consist of vertical and horizontal members of circular hollow tubular sections have been adopted widely for various purposes. It is critical to guarantee the strengths of tubular joints where vertical and horizontal members are connected structurally to make the entire space-framed system behave as a single tower structure. In this study, a strength evaluation was conducted for T-type tubular joints subjected to the concurrent action of compression and bending. Three of the available design codes, i.e., AISC, Eurocode 3, ISO 19902 were investigated and a design equation was suggested for an ultimate strength interaction between the axial force and bending moment based on nonlinear finite element analyses by selecting the slenderness ratios at the joints as major parameters.

The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass (모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구)

  • Hur, Deog-Jae;Jung, Jae-Yup;Cho, Yeon;Park, Tae-Won
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

A Study on the Constructability of Modular Steel Frame (해체.조립식 모듈러 철골조 건물의 시공성에 관한 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • The object of this paper is to evaluate on constructability of modular steel frame with the hollow structural steel section to LEB C-shape. A modular building is built with factory-manufacture and site-construction. The advantage of a Modular building presents that enhanced building quality, shortened construction period and easy at an expansion and enlargement for buildings but also has demerits such as size restriction of the modular units according to the Road Traffic Law and Inflexibility of the unit composition. So in this study we use light-weighted structure members with bolted joint for easy Knock-down and traffic, also we evaluated the constructability of this bolted joints type modular buildings.

  • PDF

Development of Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브 개발)

  • Lee, Young-Ho;Song, Jae-Joon;Cho, Jae-Young;Kim, Do-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • This study aims to develop an economical precast hollow concrete column with high constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. With this purpose, this study performed the finite element analysis and tension test by using some variables such as length of sleeve, diameter of rebar and curing method for suggesting a grouting type splice sleeve which is a new type joint rebar and developing an optimized splice sleeve. As a result, the analysis on the tension performance of splice sleeve did not show any destruction caused by pull-out in reinforcing bar but it only occurred destruction of tension bar or bolt shear rupture from the mechanical defect of sleeve. Therefore, the experiment showed high performance in tension of the suggested splice sleeve and verified the application of precast hollow concrete column.

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou;Vahab, Sarfarazi;Hadi, Haeri;Amir Aslan, Naderi;Mohammad Fatehi, Marji;Fei, Wu
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.337-351
    • /
    • 2023
  • In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).